Return to search

Two-Sample Testing of High-Dimensional Covariance Matrices

Testing the equality between two high-dimensional covariance matrices is challenging. As the most efficient way to measure evidential discrepancies in observed data, the likelihood ratio test is expected to be powerful when the null hypothesis is violated. However, when the data dimensionality becomes large and potentially exceeds the sample size by a substantial margin, likelihood ratio based approaches face practical and theoretical challenges. To solve this problem, this study proposes a method by which we first randomly project the original high-dimensional data into lower-dimensional space, and then apply the corrected likelihood ratio tests developed with random matrix theory. We show that testing with a single random projection is consistent under the null hypothesis. Through evaluating the power function, which is challenging in this context, we provide evidence that the test with a single random projection based on a random projection matrix with reasonable column sizes is more powerful when the two covariance matrices are unequal but component-wise discrepancy could be small -- a weak and dense signal setting. To more efficiently utilize this data information, we propose combined tests from multiple random projections from the class of meta-analyses. We establish the foundation of the combined tests from our theoretical analysis that the p-values from multiple random projections are asymptotically independent in the high-dimensional covariance matrices testing problem. Then, we show that combined tests from multiple random projections are consistent under the null hypothesis. In addition, our theory presents the merit of certain meta-analysis approaches over testing with a single random projection. Numerical evaluation of the power function of the combined tests from multiple random projections is also provided based on numerical evaluation of power function of testing with a single random projection. Extensive simulations and two real genetic data analyses confirm the merits and potential applications of our test. / Statistics

Identiferoai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/7353
Date January 2021
CreatorsSun, Nan, 0000-0003-0278-5254
ContributorsTang, Cheng Yong, Dong, Yuexiao, Han, Xu, GutiƩrrez, Cristian E., 1950-
PublisherTemple University. Libraries
Source SetsTemple University
LanguageEnglish
Detected LanguageEnglish
TypeThesis/Dissertation, Text
Format94 pages
RightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/
Relationhttp://dx.doi.org/10.34944/dspace/7332, Theses and Dissertations

Page generated in 0.0016 seconds