Given a configuration of pebbles on the vertices of a graph, a pebbling move is defined by removing two pebbles from some vertex and placing one pebble on an adjacent vertex. The cover pebbling number of a graph, γ (G), is the smallest number of pebbles such that through a sequence of pebbling moves, a pebble can eventually be placed on every vertex simultaneously, no matter how the pebbles are initially distributed. We determine Bose-Einstein and Maxwell-Boltzmann cover pebbling thresholds for the complete graph. Also, we show that the cover pebbling decision problem is NP-complete.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-18301 |
Date | 06 June 2009 |
Creators | Godbole, Anant P., Watson, Nathaniel G., Yerger, Carl R. |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0019 seconds