The work of mathematical giants, such as Lobachevsky, Gauss, Riemann, Klein and Poincaré, to name a few, lies at the foundation of the study of the highly structured Riemann surfaces, which allow definition of holomorphic maps, corresponding to analytic maps in the theory of complex analysis. A topological result of Poincaré states that every path-connected Riemann surface can be realised by a construction of identifying congruent points in the complex plane, the Riemann sphere or the hyperbolic plane; just three simply connected surfaces that cover the underlying Riemann surface. This requires the discontinuous action of a discrete subgroup of the automorphisms of the corresponding space. In the hyperbolic plane, which is the richest source for Riemann surfaces, these groups are called Fuchsian, and there are several ways to study the action of such groups geometrically by computing fundamental domains. What is accomplished in this thesis is a combination of the methods found by Reidemeister & Schreier, Singerman and Voight, and thus provides a unified way of finding Dirichlet domains for subgroups of cofinite groups with a given index. Several examples are considered in-depth.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-119916 |
Date | January 2015 |
Creators | Larsson, David |
Publisher | Linköpings universitet, Matematik och tillämpad matematik, Linköpings universitet, Tekniska fakulteten |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds