The breakthrough technology in dry fiber fabrication has opened the possibility for using fiber bandwidths all the way from 1.3 to 1.6£gm. However, the fiber amplifier used in commercial product, such as erbium-doped fiber amplifier (EDFA), can not fully cover the whole fiber bandwidths from 1.3 to 1.6£gm with a single fiber amplifier. Recently, the Cr4+-doped fiber has shown a broadband emission from 1.3 to 1.6£gm. Therefore, it is interesting to develop a single fiber amplifier which can operate the wide bandwidth of the 1.3~1.6£gm emission.
In this study, we have successfully fabricated and measured the Cr-doped fibers by using a commercial drawing-tower technique and a rod-in-tube method. The core diameters were 26 and 16£gm. The Cr4+ fluorescence spectrum showed a broadband emission from 1.2 to 1.6£gm. The radiation intensity was up to the order of nW. This indicates that the new Cr-doped fibers may be used as a broadband fiber amplifier. The advantages of using the drawing tower to fabricate the Cr-doped fibers are to have a better control of the core diameter, the fiber uniformity and circularity. Therefore, the Cr-doped fibers may have a potential for commercial production and application to lightwave communication systems.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0706107-200333 |
Date | 06 July 2007 |
Creators | Liu, Wen-kuei |
Contributors | Huei-Min Yang, Yan-Kuin Su, Sheng-Lung Huang, Ching-Ting Lee, Wood-Hi Cheng |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0706107-200333 |
Rights | off_campus_withheld, Copyright information available at source archive |
Page generated in 0.0016 seconds