This study describes a method for conducting the structural dynamic analysis of a crane fly (family Tipulidae) forewing under different airflow conditions. Wing geometry is captured via micro-computed tomography scanning. A finite element model of the forewing is developed from the reconstructed model of the scan. The finite element model is validated by comparing the natural frequencies of an elliptical membrane with similar dimensions of the crane fly forewing to its analytical solution. Furthermore, a simulation of the fluid-structure interaction of the forewing under different airflows is performed by coupling the finite element model of the wing with a computation fluid dynamics model. From the finite element model, the mode shapes and natural frequencies are investigated; similarly, from the fluid-structure interaction, the time-varying out-of-plane deformation, and the coefficients of drag and lift are determined.
Identifer | oai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-3006 |
Date | 18 December 2014 |
Creators | Rubio, Jose E |
Publisher | ScholarWorks@UNO |
Source Sets | University of New Orleans |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of New Orleans Theses and Dissertations |
Page generated in 0.0021 seconds