Cross-centerline crashes occur rarely in the United States but are especially severe. This type of crash is characterized by one vehicle departing over a centerline and encountering a vehicle traveling in the opposite direction. In recent years, automakers have started developing and implementing lane departure warning (LDW) on newer vehicles. This system provides the potential to reduce or significantly impact the frequency of cross-centerline crashes. The objective of this thesis was to estimate the potential crash and injury benefits of a LDW system if installed on every vehicle in the US fleet.
This research includes the following 1) a characterization of cross-centerline crashes in the United States today with current and future prevention methods, 2) a reconstruction methodology used for all crashes including rollovers and heavy vehicles, and 3) a simulation model and approach method used to estimate potential benefits of LDW systems on cross-centerline crashes.
Cross over to left crashes account for only 4% of non-junction non-interchange crashes but account for 44% of serious injury crashes of the same type. As part of this research, 42 cross-centerline crashes were reconstructed and simulated as if they had a LDW system installed. Accounting for driver capability to react to a LDW alert, crash reduction benefits ranged from 22 – 30%.Using injury risk curves, the probability of experiencing a MAIS2+ injury in a cross-centerline crash was reduced by 29% when using a LDW system. / Master of Science / Cross over to left crashes occur rarely but are typically very severe. Cross over to left crashes include wrong side of road crashes, cross over to left due to loss of control, and cross over to left over centerline crashes, also known as cross-centerline crashes. Cross-centerline crashes are typically very severe due to the high closing speeds of both vehicles. Lane departure warning (LDW) is a safety system developed by auto manufacturers designed to help drivers stay in their travel lane. Upon leaving your lane without using a turn signal, a LDW system will provide an alert to warn you to stay in your lane. While LDW systems have been found to be effective for preventing road departure crashes, there have been few studies on their effectiveness for preventing cross-centerline crashes.
The research objective of this thesis was to estimate the number of crashes in the United States that would be avoided if every vehicle was equipped with a LDW system. It was also of interest to determine the number of front-row occupants who would not experience a greater than moderate level of injury (MAIS2+) with a LDW system installed.
To form the dataset, 42 crashes were initially selected, reconstructed, and simulated as if the encroaching vehicle had a LDW system installed. The speed profile of the vehicle was constructed using crash simulation software and an approach model in order to predict the vehicle speed prior to the crash. Driver capability to react to a LDW warning was also accounted for resulting in a range of benefits. With a LDW system installed, 22- 30% of cross-centerline crashes would be avoided. The probability of experiencing a MAIS2+ injury was also reduced by 29% when a LDW system was installed.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/83235 |
Date | 16 May 2018 |
Creators | Holmes, David Alexander |
Contributors | Mechanical Engineering, Gabler, Hampton Clay, Southward, Steve C., Hardy, Warren N. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0018 seconds