Return to search

Um algoritmo eficiente para o crescimento de redes sobre o grafo probabilístico completo do sistema de regulação gênica considerado / An efficient algorithm for growing networks on the regulatory gene system complete random graph

Sabe-se biologicamente que o nível de expressão dos genes está entre os fatores podem indicar o quanto estes estão em atividade em determinado momento. Avanços na tecnologia de microarray têm possibilitado medir os níveis de expressão de milhares de genes ao mesmo tempo. Esses dados podem ser medidos de maneira a formarem uma série temporal, que pode ser tratada estatisticamente para serem obtidas informações sobre as relações entre os genes. Já foram propostos vários modelos para tratar redes gênicas matematicamente. Esses modelos têm evoluído de forma a agregarem cada vez mais características das redes reais. Neste trabalho, será feita uma revisão de modelos discretos para redes de regulação gênica, primeiramente com as redes Booleanas, modelo determinístico, e depois as redes Booleanas probabilísticas e as redes genéticas probabilísticas, modelos que tratam o problema estocasticamente. Usando o último modelo citado, serão mostrados dois métodos para estimar o nível de predição entre os genes, coeficiente de determinação e informação mútua. Além de se estimar essas relações, foram desenvolvidas algumas técnicas para construir redes a partir de genes específicos, que são chamados sementes. Também serão apresentados dois desses métodos de crescimento de redes e, baseado neles, um terceiro método que foi desenvolvido neste trabalho. Foi criado um algoritmo que realiza o crescimento da rede mudando as sementes a cada iteração, agrupando estes genes em grupos com diferentes níveis de confiança, chamados camadas. O algoritmo também usa outros critérios para agregar novos genes à rede. Após a explanação desses métodos, será mostrado um software que, a partir de dados temporais de expressão gênica, estima as dependências entre os genes e executa o crescimento da rede em torno de genes que se deseje estudar. Também serão mostradas as melhorias feitas no programa. Ao final, serão apresentados alguns testes feitos com dados do Plasmodium falciparum, parasita causador da malária. / It\'s known that gene expression levels are among the factors that can show how genes are active in certain moment. Advances in microarray technology have given the possibility to measure expression levels of thousands of genes in a certain instant of time. These data constitute time series that we can treat statistically in order to get information genes relationships. Many models were proposed to treat gene networks mathematically. These models have evolved to aggregate more and more real networks features. In this work, it is made a brief review of discrete models of regulatory genetic networks, initially Boolean networks, a deterministic model, and then probabilistic Boolean networks and probabilistic genetic networks, models that treat the problem stochastically. Using the last model cited, two methods to estimate the prediction level among genes are shown, coefficient of determination and mutual information. Besides estimating these relations, some techniques have been developed to construct networks from specific genes, that are called seeds. It will be also shown two methods of network growth and, based on these, a third method that was developed during this work. An algorithm was created, such that it grows the network changing the seeds in each iteration, grouping these genes in groups with different level of confidence, called layers. The algorithm also uses other criteria to add new genes to the network. After studying these methods, it will be shown a software that, using time series gene expression data, estimates dependences among genes and runs the network growing process around chosen genes. It is also presented the improvements made in the program. Finally, some tests using data of Plasmodium falciparum, malaria parasite, are shown.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-22012010-120624
Date10 August 2009
CreatorsLima, Leandro de Araujo
ContributorsBarrera, Junior
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0018 seconds