The expansive nature of water distribution system makes them susceptible to threats such as natural disasters and man-made destructions. Vulnerability assessment research efforts have increased since the passing of “Bioterrorism Preparedness and Response Act” in 2002 to harden WDS. This study aimed to develop a method that locates critical nodes without hydraulic analysis of every failure scenario, applicable for any size WDS, incorporates critical infrastructure, and capable of verifying method accuracy. The Flow Distribution method is the application of the gravity model, typically used to predict traffic flows in transportation engineering, to a distribution system. Flow distribution predicts the amount of demand and population that would be affected if any node in the system were disabled by solving for the distribution of each node’s outflow. Flow Distribution is applied to the hypothetical city, Anytown, USA using the computer simulation program WaterCAD to model two different disaster scenarios. Results were verified by analyzing sixteen failure scenarios (one for each node) to measure the actual demand and population effect, which was then compared to the nodes predicted by Flow Distribution. Flow Distribution predicted the critical nodes with 70% accuracy and can still be improved with future work.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-1764 |
Date | 01 May 2012 |
Creators | Hopkins, Michael |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.0022 seconds