Return to search

EVALUATION OF SELECTED INDUSTRIALLY MANUFACTURED BIOLOGICAL AMENDMENTS FOR MAIZE PRODUCTION

The soaring prices of inorganic fertilisers among other reasons has persuaded companies to commence producing biological enhanced substances herein refers as industrially manufactured biological amendments (IMBAs) with claims that they could increase crop growth and yield, and also revitalize the soil. Such claims are often without substantial empirical agronomic data to proof the efficacy of these IMBAs.
A glasshouse pot trial was conducted during 2008/09 season to assess the effects of graded rates of nine IMBAs (Biozone, Gliogrow, Gromor, Promis, Growmax, Crop care, K-humate, Lanbac and Montys) on maize seedlings establishment and growth over six-weeks. These were assessed at 50, 75 and 100% of the recommended rates together with optimum inorganic NPK fertiliser and a control as check. The IMBAs exerted in many instances a deleterious effect on percent maize seedling emergences when applied at 100% rate. Application rates of 50 and 75% appeared sufficient amongst most IMBAs for encouraging better growth and phenological development of maize, although the most appropriate rate is dependent on the IMBA type.
Rainfed trials were conducted for three seasons (2006/07-2008/09) at four localities (Bethlehem, Bothaville, Ottosdal and Potchefstroom) to assess the effects of the same nine IMBAs used above on maize performance and on soil health in a randomised completely block design. The IMBAs were applied based on product manufactures and/or supplier recommendations along with optimum inorganic NPK rate and the unamended control as check. All trial sites were planted to one maize cultivar PAN 6479. Every season, observations on phenological growth traits, grain yield and yield components, nitrogen and phosphorus content, uptake, and agronomic use efficiency, soil chemical and microbial properties and on grain quality traits were measured.
The manure-based IMBAs like Gromor, Promis and Growmax generally raised pH (H2O) to between 6.0 and 7.0 which was not always the case with the other IMBAs that coincided with inorganic NPK fertiliser. Generally, Gromor and Gliogrow recorded most cases of significant pH increases compared to the NPK treatment. The frequency of significant increases in organic C, mineral N and extractable P were only four instances and less of all 12 potential cases in relation to the NPK check. Gromor resulted in no cases of significantly higher mineral N and extractable P than the NPK check. The IMBAs promoted higher microbial biomass-C immobilisation at 4-weeks after planting while biomass-C mineralisation was predominant at flowering and crop harvest, although it tended to decline at crop harvest. The different IMBAs exerted in many instances no significant effect on biomass-C and -P compared to the NPK check.
The IMBAs had no positive effect on maize growth and phenological traits compared with the NPK treatment. Application of Gliogrow resulted in constant reduction in plant phenological growth in the 9th leaf and silking growth stages due to poor emergence, particularly from soils with higher clay content. Gromor and Promis exerted no significant positive effect on grain yield and yield components compared to the NPK check. Despite the consistent poor stand count, Gliogrow resulted in significant increases for all the yield parameters measured than any other IMBA. Compared to the NPK check, the IMBAs resulted also in few cases of significant increases on harvest index while no positive significant effect was observed on cob length.
Treatments with Biozone, Gliogrow and Promis at 9th leaf, Gliogrow and K-humate at silking, and Biozone and K-humate at harvesting significantly increased plant N content and uptake at the respective growth stages. None of the IMBAs exerted a significant effect on the agronomic use of the applied N compared to the applied N from the NPK check, except in one case with Promis. The P content and uptake recorded at 9th leaf, silking, and harvesting increased significantly in three to four instances due to the application of Promis, Growmax and Montys. The efficiency of applied P from the IMBAs was not in one case significantly better than the applied P from the NPK check.
Application of Gliogrow, Crop care and Lanbac significantly increased thousand kernel mass in two to three cases, and milling index in two to seven cases in comparison with the NPK check. Gliogrow gave solely significantly higher percentage of >11 mm, and 10-11 mm kernels than the NPK check. Equally, Gromor gave significantly higher percentage of 8-9 mm kernels, and Growmax of 7-8 mm kernels.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:ufs/oai:etd.uovs.ac.za:etd-05272013-111828
Date27 May 2013
CreatorsBaloyi, Tlangelani Cedric
ContributorsDr FR Kutu, Prof CC du Preez
PublisherUniversity of the Free State
Source SetsSouth African National ETD Portal
Languageen-uk
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.uovs.ac.za//theses/available/etd-05272013-111828/restricted/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University Free State or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0055 seconds