Return to search

Otimização dos processos de calibração e validação do modelo cropgro-soybean / Optimization of the cropgro-soybean model calibration and validation processes

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Crop models are important tools to improve the management and yield of agricultural systems. These improvements are helpful to meet the growing food and fuel demand without increase the crop areas. The conventional approach for calibrating/validating a crop model considers few to many experiments. However, few experiments could lead to higher uncertainties and a large number of experiments is too expensive. Traditionally, the classical procedure use to share an experimental dataset one part to calibrate and the other to validate the model. However, if only few experiments are available, split it could increase the uncertainties on simulation performance. On the other hand, to calibrate/validate the model using several experiments is too expensive and time consuming. Methods that can optimize these procedures, decreasing the processing time and costs, with a reliable performance are always welcome. The first chapter of this study was conducted to evaluate and compare a statistically robust method with the classical calibration/validation procedure. These two procedure, were applied to estimate the genetic coefficients of the CROPGRO-soybean model, using multiple experiments. The cross-validation leave-one-out method, was applied to 21 experiments, using the NA 5909 RG variety, across a southern state of Brazil. The cross-validation reduced the classical calibration/validation procedure average RMSE from 2.6, 4.6, 4.8, 7.3, 10.2, 677 and 551 to 1.1, 4.1, 4.1, 6.2, 6.3, 347 and 447 for emergence, R1, R3, R5, R7 (days), grains.m-2 and kg.ha-1, respectively. There was stability in the estimated ecotype and genetic coefficient among the 21 experiments. Considering the wide range of environment conditions, the CROPGRO-soybean model provided robust predictions of phenology, biomass and grain yield. Finally, to improve the calibration/validation procedure performance, the cross-validation method should be used whenever possible. For the second chapter of this study, the main objectives were to evaluate the calibration/validation uncertainties using different numbers of experiments and to find out the minimum number of experiments required for a reliable CROPGRO-Soybean simulation. This study also used 21 field experiments (BMX Potencia RR variety) sown in eight different locations of Southern Brazil between 2010 and 2014. The experiments were grouped in four classes (Individual sowings, season/year per location, experimental sites, and all data together). As the grouping level increase, the developmental stages RRMSE (%), decreased from 22.2% to 7.8% from individual sowings to all data together, respectively. The use of only one individual sowings experiment could lead to a RRMSE of 28.4, 48, and 36% for R1, LAI and yield, respectively. However, the largest decrease occurred from the individual sowings to the season/year per location. Then, is recommended, use at least the season/year per location (early, recommended and late sowing dates) class. It will allow understand the behavior of the variety, avoiding the high costs of several experiments and keeping a reliable performance of the model. / Modelos agrícolas são ferramentas importantes para aprimorar técnicas de manejo e consequentemente a eficiência dos sistemas agrícolas. Esse acréscimo na eficiência são úteis para atender a crescente demanda de alimentos e combustíveis, sem avançar a fronteira agrícola. A calibração e validação de um modelo agrícola, historicamente considerou conjuntos de dados que variam de poucos á muitos experimentos. Poucos experimentos podem aumentar as incertezas e muitos experimentos tem alto custo financeiro e demanda de tempo. Pelo método de partição em dois grupos, o conjunto de experimentos é dividido em duas partes, uma para calibrar e a outra validar o modelo. Se apenas um conjunto pequeno de experimentos está disponível, dividi-los pode prejudicar o desempenho do modelo. Assim, métodos que otimizem esses processos, diminuindo o tempo e o custo de experimentos necessários para a calibração e validação, são sempre bem vindos. O objetivo do primeiro capítulo desta tese, foi comparar o método tradicionalmente utilizado na calibração e validação de modelos com um método mais robusto (cross-validation). Ambos os métodos foram aplicados para estimar os coeficientes genéticos na calibração e validação do modelo CROPGRO-soybean, utilizando múltiplos experimentos. Um conjunto com os 3 experimentos mais detalhados foram utilizados para calibração utilizando o método de partição em dois grupos. Já o método cross-validation, foi aplicado utilizando 21 experimentos. A cultivar NA5909 RG foi selecionada por ser uma das mais cultivadas no sul do Brasil nos últimos 5 anos, conduzida em experimentos distribuídos em oitos locais do Estado do Rio Grande do Sul durante as safras de 2010/2011 ate 2013/2014. O método cross-validation reduziu os RMSEs encontrados no método tradicionalmente utilizado de 2.6, 4.6, 4.8, 7.3, 10.2, 677 e 551 para 1.1, 4.1, 4.1, 6.2, 6.3, 347 e 447 para emergência, R1, R3, R5, R7 (em dias), grãos.m-2 e kg.ha-1, respectivamente. Foi observado estabilidade na maioria das estimativas de coeficientes genéticos, o que sugere a possibilidade de utilizar um menor número de experimentos no processo. Considerando a ampla faixa de condições ambientais, o modelo apresentou desempenho satisfatório na previsão fenológica, de biomassa e produtividade. Para otimizar os processos de calibração e validação, indica-se que o método cross-validation seja utilizado sempre que possível. No segundo capítulo, o principal objetivo foi avaliar o desempenho do uso de diferentes números de experimentos, e estimar o número mínimo necessário para garantir desempenho satisfatório do modelo CROPGRO-soybean. Esse estudo também utilizou 21 experimentos, com a cultivar BMX Potência RR. Os experimentos foram organizados em quatro grupos: Grupo 1 (semeaduras individuais), grupo 2 (ano agrícola por local), grupo 3 (local experimental) e grupo 4 (todos os experimentos juntos). Conforme o número de experimentos aumentou, a variabilidade dos coeficientes e os erros relativos (RRMSE) diminuíram. O primeiro grupo apresentou os maiores erros relativos, com até 28.4, 48 e 36% de erros nas simulações de R1, IAF e produtividade, respectivamente. O maior decréscimo nos erros relativos, ocorreu quando avançamos do grupo 1 para o grupo 2. Em alguns casos os erros foram reduzidos em mais que duas vezes. Assim, considerando o elevado custo financeiro e a demanda de tempo que os grupos 3 e 4 apresentam, recomenda-se a escolha de pelo menos o grupo 2, com 3 experimentos no mesmo ano agrícola. Essa estratégia vai permitir um melhor entendimento sobre o desempenho da cultivar, além de calibrar e validar o modelo CROPGRO-soybean, evitando os altos custos de vários experimentos, garantindo o desempenho satisfatório do modelo.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufsm.br:1/11661
Date06 December 2016
CreatorsFensterseifer, Cesar Augusto Jarutais
ContributorsStreck, Nereu Augusto, Dalmago, Genei Antônio, Radin, Bernadete, Swarowsky, Alexandre, Heldwein, Arno Bernarndo
PublisherUniversidade Federal de Santa Maria, Centro de Ciências Rurais, Programa de Pós-Graduação em Engenharia Agrícola, UFSM, Brasil, Engenharia Agrícola
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Repositório Institucional da UFSM, instname:Universidade Federal de Santa Maria, instacron:UFSM
RightsAttribution-NonCommercial-NoDerivatives 4.0 International, http://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess
Relation500300000008, 600, 600, 3b01ed40-f2a9-4cc8-9109-59e6f482b05d, 2eb764bf-dc74-4b89-97b6-de474bae08fd, e76d7904-0e16-4152-a3a2-3917c8615282, dfab7de9-f2bc-437e-83d7-d3a88f0a41e7, b48b0225-2751-47c1-9577-1b9af38401dc, b126272d-55b7-48e7-8743-22a7345bf0aa

Page generated in 0.0702 seconds