Return to search

Proteomics-based study of host-fungus interaction between soybean and Phakopsora pachyrhizi using recombinant inbred line (RIL) derived sister lines

Phakopsora pachyrhizi, the causal agent of Asian soybean rust (ASR), has the potential to cause severe yield losses as all United States commercial soybean varieties are susceptible. In this study, 10 soybean recombinant inbred line (RIL) derived sibling lines of two populations (RN06-32-2 and RN06-16-1) were evaluated for differences in response to infection by P. pachyrhizi. These lines, which had previously shown differential responses to Florida soybean rust isolates, were evaluated using Louisiana soybean rust isolates under both detached leaf assay and greenhouse in planta inoculation conditions. Sibling lines showed significant differences in response to P. pachyrhizi infection under both conditions. Lines 8-a, 8-b, 94-c of population RN06-32-2 and lines 15-b and 16-c of population RN06-16-1 showed a resistant response against Louisiana rust isolates in comparison with the immune response against Florida rust isolates. Whereas, lines 15-c and 16-b of population RN06-16-1 and lines 8-c, 94-a, and 94-b showed similar responses against Louisiana rust isolates as that of Florida rust isolates. Lines 15-c and 16-b showed moderately resistant response; lines 8-c, 94-a, and 94-b showed susceptible and resistant response, respectively. To understand the compatible and incompatible host-pathogen interactions at the molecular level, we conducted a time-course study (0 h, 10 h, 1 d, 2 d, 3 d, 4 d, 5 d, 8 d, 10 d, 12 d and 14 d) of P. pachyrhizi infection and compared protein profiles of 8-a (resistant) and 8-c (susceptible) lines in response to ASR inoculation, using DIGE proteomics. Based on the gel analysis, we observed approximately 100 differentially expressed spots between 8-a and 8-c lines. Among these, 37 proteins were identified using mass spectrometry. Most of the identified proteins are involved in photosynthesis and carbon metabolism, defense mechanism, seed storage and include some uncharacterized proteins.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-11152013-200438
Date21 November 2013
CreatorsGaniger, Mala
ContributorsValverde, Rodrigo, Clark, Christopher, Chen, Zhi-Yuan
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-11152013-200438/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0019 seconds