Return to search

A Comparison of Microbial Communities in Soil With and Without a Sugacane Cropping History

Sugarcane (inter-specific hybrids of Saccharum) is grown largely under long-term monoculture production in Louisiana. This can lead to a complex problem termed "yield decline" that results in poor root health and reduced productive capacity of sugarcane. This problem has been documented to be a limiting factor for sugarcane production in diverse regions, including Louisiana, Hawaii, Jamaica, and Australia. Previous work showed that biological factors affect root health and contribute to yield decline. The objectives of this study were to increase our understanding of microbial communities in sugarcane soils, to determine if there are differences in microbial communities associated with sugarcane roots in soil with and without a sugarcane cropping history, and to provide information on possible changes in the microbial communities resulting from monoculture that may contribute to yield decline.
<p>
To achieve these objectives, two approaches were used for comparing culturable organisms in soil microbial communities from soil with and without a sugarcane cropping history, and methods were adapted to reliably obtain DNA from soil microbial communities for molecular comparisons. In one approach, colonies grown on different types of culture media were quantified and characterized. In the other approach, sole carbon source utilization profiles (SCSUP) of soil communities grown in Biolog(tm) GN2 microplates were compared. Comparisons of the numbers and types of microorganisms that grew on various culture media demonstrated that differences exist between microbial communities associated with sugarcane roots in Louisiana soils with and without a recent sugarcane cropping history. The differences in community functional diversity detected by SCSUP supported the differences found in types of microorganisms isolated on selective media. The SCSUP results showed that differences in community functional diversity exist between sites in soils with a long-term sugarcane cropping history in common.
<p>
Methods for DNA extraction and polymerase chain reaction (PCR) amplification were optimized for sugarcane soil microbial community samples from Louisiana. This will allow molecular characterization of sugarcane rhizosphere microbial communities in the future.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-0402103-125735
Date03 April 2003
CreatorsSavario, Carolyn Faye
ContributorsRaymond W. Schneider, Christopher A. Clark, Michael P. Grisham, Rodrigo A. Valverde, Jeffrey W. Hoy
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-0402103-125735/
Rightsunrestricted, I hereby grant to LSU or its agents the right to archive and to make available my thesis or dissertation in whole or in part in the University Libraries in all forms of media, now or hereafter known. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Page generated in 0.0024 seconds