Return to search

Synthesis and Utility of Organoboron Reagents for Enantioselective Synthesis

Thesis advisor: James P. Morken / Described herein are three distinct projects centered on the formation and use of carbon-boron bonds. In the first, the enantioselective platinum-catalyzed 1,4-diboration of trans-1,3-dienes is advanced in both selectivity and scope through the development of a novel class of electron rich chiral monodentate phosphines. Under the action of the new ligands, highly selective diboration is maintained at reduced loadings of catalyst. Secondly, enantioenriched 1,2-bis(pinacol boronates) are engaged in regioselective Suzuki-Miyaura cross-coupling with aryl and vinyl electrophiles. A tandem diboration cross-coupling sequence is successfully implemented to afford homobenzylic and homoallylic pinacol boronates directly from terminal olefins, which subsequently undergo oxidation, amination or homologation of the remaining carbon-boron bond to arrive at a range of enantioenriched products. Lastly, aryl electrophiles containing tethered allylboronate units undergo efficient intramolecular coupling in the presence of a chiral palladium catalyst to give enantioenriched carbocyclic products. / Thesis (PhD) — Boston College, 2014. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.

Identiferoai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_103558
Date January 2014
CreatorsSchuster, Christopher Henry
PublisherBoston College
Source SetsBoston College
LanguageEnglish
Detected LanguageEnglish
TypeText, thesis
Formatelectronic, application/pdf
RightsCopyright is held by the author, with all rights reserved, unless otherwise noted.

Page generated in 0.0017 seconds