A general and modular synthetic approach to 4-substituted phenyl, 2-substituted pyridin- 5-yl and 5-substituted pyridin-2-yl 2′-C-methyl-C-ribonucleosides as potential anti-HCV agents was developed. Addition of halo(het)aryllithium reagents to benzylated 2-C-methyl-D- ribonolactone gave the corresponding hemiketals, which were subsequently converted to the β-anomeric benzyl-protected bromo(het)aryl-C-nucleosides via either direct reduction (in the case of phenyl derivative) or acetylation followed by reduction of the resulting hemiketal acetates (in the case of pyridyl derivatives). The key halogenated (het)aryl-C-nucleoside intermediates were further transformed by Pd-catalyzed cross-coupling, hydroxylation and amination reactions affording series of protected C-nucleosides with small hydrophilic and hydrophobic substituents. The final protecting group removal was rather problematic, and different debenzylation methods, such as hydrogenation on Pd/C or treatment with BCl3, had to be optimized for each derivative to minimize the formation of side-products. The final C- nucleosides were also converted into their 5′-O-triphosphates, and biological activity screenings revealed that none of the free C-nucleosides possesses any antiviral activity in the HCV replicon assay, and none of their NTPs...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:437773 |
Date | January 2021 |
Creators | Tokarenko, Anna |
Contributors | Hocek, Michal, Rádl, Stanislav, Dvořák, Dalimil |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0014 seconds