Return to search

Directing Transition Metal Catalysis of Second and Third Row Metals through Ligand Design

Ligand design is important due to a ligand's ability to tune properties of the transition metals, such as catalytic activity and selectivity. Gold(I) catalysts can be directly impacted by ligands electronically as well as with steric bulk when undergoing enantioselective and regioselective reactions. In the dissertation, a series of gold(I) acyclic diaminocarbenes were synthesized and used to explore the 1,6 enyne cyclization/hydroarylation. The use of metal templated synthesis of the gold(I) acyclic diaminocarbenes allowed for the gradual increase in steric bulk of the catalysts. In the end, it was shown that electronics play the major role in the regioselectivity for the 1,6 enyne cyclization/hydroarylation but localized steric bulk can control the catalytic reaction if placed strategically. Cross-coupling reactions used to form carbon-carbon or carbon-heteroatom bonds are important in the production of pharmaceutical chemicals on a large scale. Iron, an extremely cheap and earth abundant first row transition metal, has had some success in cross-coupling reactions. Iron does not go through the same catalytic cycle for cross-coupling as most transition metals, the most common of which is palladium. In the dissertation, a ligand was developed to induce Iron to undergo the same cycle as palladium. In addition, the same ligand was placed on palladium(II) and reduced to try to form and isolate a catalytically active palladium(0) complex.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc2257712
Date12 1900
CreatorsNguyen, John
ContributorsSlaughter, LeGrande M., Wang, Hong, Omary, Mohammad, Richmond, Michael
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Nguyen, John, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0058 seconds