Return to search

The Impact of Films on the Long-Term Behavior of Stationary Electrical Connections and Contacts in Electric Power Systems

Stationary electrical connections and contacts, such as power connections, are commonly applied in electric power systems used for generation, transmission and distribution of electric energy. Several different degradation mechanisms can increase the contact resistance and might therefore reduce the power connection’s lifetime. The degradation by film development as a result of chemical reactions is often considered as a reason for contact failure.

In this research work, the impact of film development produced by chemical reactions, such as oxidation, on the long-term behavior of stationary electrical connections and contacts was studied with crossed rods. Analytical, numerical and experimental methods were applied. Typical material systems for electric power systems were considered in this study: Cu-ETP (CW004A) bare, silver-, nickel- or tin-coated, Al99.5 (EN AW-1050A) and AlMgSi0.5 (EN AW-6060).

By applying numerical methods, the mechanical stress distribution was determined within a circular contact point. The initial contact resistance and the plastic deformed area of the considered material systems was measured in experimental tests. The film’s impact was further determined through comparative experimental studies in air (standard atmosphere) and N2 (inert gas).

During the experimental tests on perpendicularly crossed rods, other degradation mechanisms such as force reduction were suppressed. The film’s impact within the formation phase was studied on copper rods in an oven at 200 °C for 1000 h. Moreover, the dependency on different environments at 90 °C (laboratory, botanical garden and outdoor) was tested for 12000 h. Additional long-term tests over 12000 h were conducted at 200 °C. The contact resistance was determined dependent on time. Furthermore, the plastic deformed area was ascertained by microscopy. It was found that the time dependent film development caused by chemical reactions such as oxidation might possibly not result in a significant degradation of stationary electrical contacts with circular contact points and a constant force.

Supplementary studies were performed at 200 °C for 1000 h with perpendicularly crossed rods at low forces (3.5 N) as well as analytical assessment of radial and axial film growth on circular contact points. The measured long-term behavior of perpendicularly crossed rods was similar for low and high forces.

In order to study the long-term behavior of power connections operated in areas with harsh environmental conditions, experimental field tests on bolted busbar joints were conducted in desert and tropical rainforest environments. For over two and a half years, long-term field tests investigating bolted busbar joints made of Cu-ETP, Al99.5 (EN-AW-1350A) or AlMgSi0.5 (EN AW-6060) either with or without coating (silver, tin or nickel) were conducted in Belém (Brazil), Ismailia (Egypt) and Dresden (Germany).

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:29263
Date18 December 2015
CreatorsDreier, Sebastian
ContributorsGroßmann, Steffen, Ben Jemaa, Noureddine, Papailiou, Konstantin, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds