Return to search

Production d’hydrogène solide sous forme de films de taille micronique. / Production of micron-sized films of solid hydrogen.

Le développement des lasers de fortes puissances réalisé au cours des dix dernières années a ouvert de nouveaux champs de recherche dans de nombreux domaines tels que la production de faisceaux de particules chargées. Lors de l'interaction d'un faisceau laser avec une cible, il est en effet possible de générer un faisceau d'ions ou d'électrons d'une large gamme énergétique dépendant de la puissance du laser et de la nature de la cible.Les physiciens qui étudient les interactions laser-matière montrent un grand intérêt à pouvoir réaliser des expériences avec une cible d'hydrogène pure de l'ordre d'une dizaine de micromètres d'épaisseur. Lors d'une telle interaction, un faisceau constitué uniquement de protons accélérés est produit. La protonthérapie est l'une des applications phares qui utilise les propriétés particulières des protons accélérés pour détruire des tumeurs cancéreuses. Cette technique, plus légère et moins coûteuse, pourrait remplacer dans les années à venir les gros accélérateurs de particules, situés en sous-sol des hôpitaux. Les travaux menés durant cette thèse ont permis de développer un moyen d'obtenir et de caractériser de telles cibles, et ce en utilisant un nouveau procédé d'extrusion.L'extrusion d'hydrogène solide requiert des fortes pressions (100 à 400 bar) et des basses températures (inférieures à 13 K). Les fortes pressions sont obtenues à l'aide des propriétés thermodynamiques du fluide. Dans un premier temps, de l'hydrogène est introduit puis solidifié dans la cellule expérimentale jusqu'à remplir celle-ci. La cellule est alors fermée et chauffée en partie haute afin de liquéfier l'hydrogène qui s'y trouve. La dilatation qui résulte du changement de phase, génère une pression sur l'hydrogène solide qui est situé sous le liquide. Cette pression permet d'obtenir la force nécessaire à l'extrusion qui est réalisée au travers d'une buse se situant à l'extrémité basse de la cellule. La principale différence avec un procédé classique d'extrusion est l'absence de parties mobiles.Des premiers rubans d'hydrogène d'une largeur de 1 mm et d'une épaisseur de 100 µm ont été obtenus et ont donné lieu à publication en mars 2014. Une évolution de la cellule et du cryostat a ensuite été réalisée dans le but d'atteindre des épaisseurs de rubans plus faibles (25 et 50 µm).Une buse cylindrique d'un diamètre de 140 µm a également permis d'obtenir de longs cylindres d'hydrogène solide et de comprendre le comportement de l'écoulement dans des géométries simples. En parallèle, de nombreuses simulations numériques ont été réalisées dans le but de caractériser ce comportement. Un modèle dédié a ainsi été établi, pour lequel les résultats expérimentaux et les simulations sont en bon accord.Un algorithme de mesure de vitesses d'écoulement, basé sur le suivi de défauts présents dans le film d'hydrogène a également été développé. Celui-ci est basé sur une technique d'inter-corrélation d'images. L'épaisseur du ruban est également obtenue par analyse d'images acquises. Ces résultats sont en adéquation avec la mesure du débit d'hydrogène pompé, réalisée en aval du cryostat.De nombreux laseristes ont alors manifesté leur intérêt autour de ce nouveau procédé et une collaboration a été mise en place avec l'équipe du laser PALS, à Prague, dans le but d'installer une nouvelle version du cryostat, capable de se fixer sur la chambre à vide de leur laser. Cette équipe, qui sera la première à tirer sur des cibles d'hydrogène solide courant novembre 2015, souhaite valider certaines théories et accélérer des protons en utilisant le principe de la TNSA (Target Normal Shealth Acceleration). Les laseristes du LULI (situés à Palaiseau, en France) sont également intéressés pour utiliser de telles cibles et une installation sur leur chambre laser a été planifiée au mois de janvier 2016. En parallèle, des physiciens de l'Institut Lumière Matière du CNRS de Lyon souhaitent également utiliser ces cibles pour générer des rayons X-UV. / The development of very high power lasers in the latest decade opened up new horizons in a various field, such as the production of accelerated ion beams. When a laser beam interacts with a target, the generated beam can contain energetic ions or electrons with a large energy spectrum (1–200 MeV). This energy distribution depends on the laser power and the nature of the target.Physicists studying the interaction between laser and materials are really interested in having very thin (10 µm) ribbons of solid hydrogen that could be used as a target. Indeed, during the interaction between a laser and such a target, a pure proton beam can be created. Protontherapy is one of the main potential applications which uses the special properties of accelerated protons to destroy cancerous tumor. This technique, lighter and cheaper, could replace in the next years huge particle accelerators situated underground the equipped hospitals. This PhD thesis was about developing a way to get and characterize such ribbons, using a new extrusion process.Extrusion of solid hydrogen requires a high pressure (10 MPa to 40 MPa) and a low temperature (below 13K). This is achieved by using the thermodynamic properties of the fluid. First, the cell is filled in with solid H2, then closed. Afterward, the upper part is heated to liquefy the solid. The expansion, resulting from the phase change creates a pressure on the solid hydrogen, located below the liquid. The extrusion is realized through a micron-sized hole at the bottom of the cell. The main difference with a classic extrusion process is the absence of moving parts.First solid hydrogen ribbons (1mm large and 100 microns of thickness) have been obtained in March 2014, leading to an article in a peer review (laser and particle beams (2014) 32,569-575, Continuous production of a thin ribbon of solid hydrogen). The use of a 50 micron nozzle was satisfying but it showed the limitation in the design of the cell, leading to an upgraded one, which will enable to extrude thinner ribbons.A cylindrical nozzle (140 microns diameter) has also been used to obtain long cylinders of solid hydrogen and to be able to understand the solid hydrogen flow in simple geometries. In parallel, several numerical simulations have been carried out to establish the flow behavior of solid hydrogen during the extrusion process. An “home made” model has been developed for which experimental results and numerical calculations fit quite well for different nozzles' geometries.Using small ribbon defaults as velocity tracers, cross-correlation algorithm has also been developed to measure the velocity during the extrusion process. The ribbon thickness is also extracted from image analysis. These results are also correlated by flowmeter measurements and appeared to be accurate.Several laser teams have shown a great interest for these results and a collaboration contract has been signed with the laser PALS team (Prague) to install an updated version of this cryostat, able to be plugged in their vacuum chamber. The team wants to shoot the solid hydrogen target to understand the laser/matter interaction and accelerate proton through the TNSA (Target Normal Sheath Acceleration) principle. It will be the first time such target will be shot. The installation of the cryostat is scheduled by the end of august and the first experiments are planned during november 2015. LULI's laser team at Palaiseau in France is also interested in using these targets and is planning to shoot them in January 2016. In parallel, CNRS physicists of the ILM (Institut Lumière Matière de Lyon) would like to use these targets to generate X-UV radiation.

Identiferoai:union.ndltd.org:theses.fr/2015GREAY050
Date06 November 2015
CreatorsGarcia, Stéphane
ContributorsGrenoble Alpes, Rousset, Bernard
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0023 seconds