This thesis deals with the characterization of bacterial cells capable of polyhydroxyalkanoates (PHA) accumulation. The dissertation thesis is written in the form of a discussed published publications which are attached to the thesis as appendixes. The work develops a study of the current topic of the protective functions of PHA and clarifies protective mechanisms against selected stressors. Firstly, we focused on the protective effects of PHA granules against UV radiation and osmotic stress, specifically hypotonic conditions. In the case of UV exposition, the cells protected themselves by scattering UV radiation on the intracellular granules protecting especially nucleoid. When exposed to osmotic stress, the amorphous state of PHA granules is very important since it is capable of stabilization of cell membranes under hypertonic stress, afterwards, bacterial cells can maintain their integrity during the subsequent hypotonic challenge. In general, the amorphous state of PHA granules is key to ensure the proper biological functions of PHA whether as storage or protective polymer. Therefore, in the next part of this work, we focused on the core of the stabilization mechanism that protects native PHA granules from crystallization and thus the intracellular polymer maintains in a thermodynamically unfavorable amorphous phase state. Based on experimental work, we applied selected stresses because we proposed a new model of stabilization of the amorphous state of PHA granules in vivo. It consists of two mechanisms, where small volumes of PHA granules reduce the rates of crystallization and at the same time the water present in the granules plays the role of a low molecular plasticizer. Due to the metabolic apparatus of bacterial cells, PHA are simultaneously synthesized and degraded which leads to an increment of intracellular concentration of monomers that also figure in the protective effect of PHA. In this context, we aimed at the description of the mechanism of cryoprotective effects of 3-hydroxybutyrate, the monomer of the most common of PHA, poly(3-hydroxybutyrate). Hence, we constructed an equilibrium and non-equilibrium phase diagram of the 3HB-water system to prove that 3HB is a very effective cryoprotectant. This fundamental understanding of the protective properties of PHA monomers could be also used in the food industry or cryopreservation of biological samples.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:438297 |
Date | January 2021 |
Creators | Slaninová, Eva |
Contributors | Lehocký, Marián, Doškař, Jiří, Chodak, Ivan, Obruča, Stanislav |
Publisher | Vysoké učení technické v Brně. Fakulta chemická |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds