Return to search

Cyklicky-aditivně-diferenční množiny ze Singerových a GMW diferenčních množin. / Cyklicky-aditivně-diferenční množiny ze Singerových a GMW diferenčních množin.

Cyclic-additive-difference sets are combinatorial objects defined by Claude Carlet in 2018. It is, in some sense similar to cyclic difference sets, a well-known concept. In this thesis, first we summarize the current knowledge about cyclic-additive-difference sets and their connection to differential cryptanalysis. Then we present our own results. First, we prove the existence of three infinite families of cyclic-additive-difference sets arising from powers of Singer sets which is an open problem asked by Carlet in 2019. Then we generalize the definition of cyclic-additive-difference sets to the fields of odd characteristic and study similar sets in odd characteristic case. 1

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:452312
Date January 2021
CreatorsBeneš, Daniel
ContributorsGöloglu, Faruk, Drápal, Aleš
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0017 seconds