In the last few years, security has become one of the key challenges in computing systems. Failures in the secure operations of these systems have led to massive information leaks and cyber-attacks. Case in point, the identity leaks from Equifax in 2016, Spectre and Meltdown attacks to Intel and AMD processors in 2017, Cyber-attacks on Facebook in 2018. These recent attacks have shown that the intruders attack different layers of the systems, from low-level hardware to software as a service(SaaS). To protect the systems, the defense mechanisms should confront the attacks in the different layers of the systems. In this work, we propose four security mechanisms for computing systems: (i ) using backside imaging to detect Hardware Trojans (HTs) in Application Specific Integrated Circuits (ASICs) chips, (ii ) developing energy-efficient reconfigurable cryptographic engines, (iii) examining the feasibility of malware detection using Hardware Performance Counters (HPC).
Most of the threat models assume that the root of trust is the hardware running beneath the software stack. However, attackers can insert malicious hardware blocks, i.e. HTs, into the Integrated Circuits (ICs) that provide back-doors to the attackers or leak confidential information. HTs inserted during fabrication are extremely hard to detect since their overheads in performance and power are below the variations in the performance and power caused by manufacturing. In our work, we have developed an optical method that identifies modified or replaced gates in the ICs. We use the near-infrared light to image the ICs because silicon is transparent to near-infrared light and metal reflects infrared light. We leverage the near-infrared imaging to identify the locations of each gate, based on the signatures of metal structures reflected by the lowest metal layer. By comparing the imaged results to the pre-fabrication design, we can identify any modifications, shifts or replacements in the circuits to detect HTs.
With the trust of the silicon, the computing system must use secure communication channels for its applications. The low-energy cost devices, such as the Internet of Things (IoT), leverage strong cryptographic algorithms (e.g. AES, RSA, and SHA) during communications. The cryptographic operations cause the IoT devices a significant amount of power. As a result, the power budget limits their applications. To mitigate the high power consumption, modern processors embed these cryptographic operations into hardware primitives. This also improves system performance. The hardware unit embedded into the processor provides high energy-efficiency, low energy cost. However, hardware implementations limit flexibility. The longevity of theIoTs can exceed the lifetime of the cryptographic algorithms. The replacement of the IoT devices is costly and sometimes prohibitive, e.g., monitors in nuclear reactors.In order to reconfigure cryptographic algorithms into hardware, we have developed
a system with a reconfigurable encryption engine on the Zedboard platform. The hardware implementation of the engine ensures fast, energy-efficient cryptographic operations.
With reliable hardware and secure communication channels in place, the computing systems should detect any malicious behaviors in the processes. We have explored the use of the Hardware Performance Counters (HPCs) in malware detection. HPCs are hardware units that count micro-architectural events, such as cache hits/misses and floating point operations. Anti-virus software is commonly used to detect malware but it also introduces performance overhead. To reduce anti-virus performance overhead, many researchers propose to use HPCs with machine learning models in
malware detection. However, it is counter-intuitive that the high-level program behaviors can manifest themselves in low-level statics. We perform experiments using 2 ∼ 3 × larger program counts than the previous works and perform a rigorous analysis to determine whether HPCs can be used to detect malware. Our results show that the False Discovery Rate of malware detection can reach 20%. If we deploy this detection system on a fresh installed Windows 7 systems, among 1,323 binaries, 198 binaries would be flagged as malware.
Identifer | oai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/36149 |
Date | 04 June 2019 |
Creators | Zhou, Boyou |
Contributors | Joshi, Ajay, Egele, Manuel |
Source Sets | Boston University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Rights | Attribution-ShareAlike 4.0 International, http://creativecommons.org/licenses/by-sa/4.0/ |
Page generated in 0.0021 seconds