abstract: The origins of carrier mobility (μe) were thoroughly investigated in hydrogenated indium oxide (IO:H) and zinc-tin oxide (ZTO) transparent conducting oxide (TCO) thin films. A carrier transport model was developed for IO:H which studied the effects of ionized impurity scattering, polar optical phonon scattering, and grain boundary scattering. Ionized impurity scattering dominated at temperatures below ~240 K. A reduction in scattering charge Z from +2 to +1 as atomic %H increased from ~3 atomic %H to ~5 atomic %H allowed μe to attain >100 cm^2/Vs at ~5 atomic %H.
In highly hydrogenated IO:H, ne significantly decreased as temperature increased from 5 K to 140 K. To probe this unusual behavior, samples were illuminated, then ne, surface work function (WF), and spatially resolved microscopic current mapping were measured and tracked. Large increases in ne and corresponding decreases in WF were observed---these both exhibited slow reversions toward pre-illumination values over 6-12 days. A hydrogen-related defect was proposed as source of the photoexcitation, while a lattice defect diffusion mechanism causes the extended decay. Both arise from an under-coordination of the In.
An enhancement of μe was observed with increasing amorphous fraction in IO:H. An increase in population of corner- and edge-sharing polyhedra consisting of metal cations and oxygen anions is thought to be the origin. This indicates some measure of medium-range order in the amorphous structure, and gives rise to a general principle dictating μe in TCOs---even amorphous TCOs. Testing this principle resulted in observing an enhancement of μe up to 35 cm^2/Vs in amorphous ZTO (a-ZTO), one of the highest reported a-ZTO μe values (at ne > 10^19 cm^-3) to date. These results highlight the role of local distortions and cation coordination in determining the microscopic origins of carrier generation and transport. In addition, the strong likelihood of under-coordination of one cation species leading to high carrier concentrations is proposed. This diverges from the historical indictment of oxygen vacancies controlling carrier population in crystalline oxides, which by definition cannot occur in amorphous systems, and provides a framework to discuss key structural descriptors in these disordered phase materials. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2020
Identifer | oai:union.ndltd.org:asu.edu/item:57380 |
Date | January 2020 |
Contributors | Husein, Sebastian S.T. (Author), Bertoni, Mariana I. (Advisor), Stückelberger, Michael (Committee member), Holman, Zachary C. (Committee member), Crozier, Peter (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Doctoral Dissertation |
Format | 257 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0022 seconds