Data warehouses store large volumes of consolidated and historized multidimensional data to be explored and analysed by various users. The data exploration is a process of searching relevant information in a dataset. In this thesis, the dataset to explore is a data cube which is an extract of the data warehouse that users query by launching sequences of OLAP (On-Line Analytical Processing) queries. However, this volume of information can be very large and diversified, it is thus necessary to help the user to face this problem by guiding him/her in his/her data cube exploration in order to find relevant information. The present work aims to propose recommendations, as OLAP queries, to a user querying a data cube. This proposal benefits from what the other users did during their previous explorations of the same data cube. We start by presenting an overview of the used framework and techniques in Information Retrieval, Web Usage Mining or e-commerce. Then, inspired by this framework, we present a state of the art on collaborative assistance for data exploration in (relationnal and multidimensional) databases. It enables us to release work axes in the context of multidimensional databases. Thereafter, we propose thus a generic framework to generate recommendations, generic in the sense that the three steps of the process are customizable. Thus, given a set of sequences of queries, corresponding to the previous explorations of various users, and given the sequence of queries of the current user, our framework proposes a set of queries as recommendations following his/her sequence. Then, various instantiations of our framework are proposed. Then, we present a Java prototype allowing a user to specify his/her current sequence of queries and it returns a set of recommendations. This prototype validates our approach and its effectiveness thanks to an experimentations collection. Finally, in order to improve this data cube exploration collaborative assistance and, in particular, to share, navigate or annotate the launched queries, we propose a framework to manage queries. Thus, an instantiation to manage recommendations is presented. / Les entrepôts de données stockent de gros volumes de données multidimensionnelles, consolidées et historisées dans le but d'être explorées et analysées par différents utilisateurs. L'exploration de données est un processus de recherche d'informations pertinentes au sein d'un ensemble de données. Dans le cadre de nos travaux, l'ensemble de données à explorer est un cube de données qui est un extrait de l'entrepôt de données que les utilisateurs interrogent en lançant des séquences de requêtes OLAP (On-Line Analytical Processing). Cependant, cette masse d'informations à explorer peut être très importante et variée, il est donc nécessaire d'aider l'utilisateur à y faire face en le guidant dans son exploration du cube de données afin qu'il trouve des informations pertinentes. Le travail présenté dans cette thèse a pour objectif de proposer des recommandations, sous forme de requêtes OLAP, à un utilisateur interrogeant un cube de données. Cette proposition tire parti de ce qu'ont fait les autres utilisateurs lors de leurs précédentes explorations du même cube de données. Nous commençons par présenter un aperçu du cadre et des techniques utilisés en Recherche d'Informations, Exploration des Usages du Web ou e-commerce. Puis, en nous inspirant de ce cadre, nous présentons un état de l'art sur l'aide à l'exploration des bases de données (relationnelles et multidimensionnelles). Cela nous permet de dégager des axes de travail dans le contexte des bases de données multidimensionnelles. Par la suite, nous proposons donc un cadre générique de génération de recommandations, générique dans le sens où les trois étapes du processus sont paramétrables. Ainsi, à partir d'un ensemble de séquences de requêtes, correspondant aux explorations du cube de données faites précédemment par différents utilisateurs, et de la séquence de requêtes de l'utilisateur courant, notre cadre propose un ensemble de requêtes pouvant faire suite à la séquence de requêtes courante. Puis, diverses instanciations de ce cadre sont proposées. Nous présentons ensuite un prototype écrit en Java. Il permet à un utilisateur de spécifier sa séquence de requêtes courante et lui renvoie un ensemble de recommandations. Ce prototype nous permet de valider notre approche et d'en vérifier l'efficacité avec un série d'expérimentations. Finalement, afin d'améliorer cette aide collaborative à l'exploration de cubes de données et de permettre, notamment, le partage de requêtes, la navigation au sein des requêtes posées sur le cube de données, ou encore de les annoter, nous proposons un cadre d'organisation de requêtes. Ainsi, une instanciation adaptée à la gestion des recommandations est présentée.
Identifer | oai:union.ndltd.org:theses.fr/2009TOUR4023 |
Date | 01 December 2009 |
Creators | Negre, Elsa |
Contributors | Tours, Giacometti, Arnaud, Marcel, Patrick |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0014 seconds