Quantum entanglement is widely renounced as one of the most fundamental concepts of quantum mechanics. Such phenomenon exhibit non-local interaction properties which cannot be explained classically. In this thesis, we address a number of problems associated with creating, transferring and engineering of entanglement between two separate parties. The work is motivated by a desire to better understand the dynamics of entanglement between systems. In particular, the research is mainly focused on the study of the dynamics of the well known maximally entangled Bell state under different influences such as decoherence and inter-qubit coupling. We show the connection between coherence and entanglement using the system sub jected to decoherence. We also confirm the transfer of entanglement between completely isolated partite using the double Jaynes-Cummings model. Based on this result, we propose a new conservation criterion proven to be general for single excitation systems. Such conservation criterion are then compared and extended to a general N qubit systems. In addition, an attempt is made to evaluate entanglement conservation rules for the EPR- like multipartite entanglement. We also describe a new technique for solving entanglement in the top-down way ignoring physical setup.
Identifer | oai:union.ndltd.org:ADTP/285732 |
Creators | Sze-liang Chan |
Source Sets | Australiasian Digital Theses Program |
Detected Language | English |
Page generated in 0.0014 seconds