Les travaux présentés dans ce manuscrit consistent à élaborer par la méthode céramique des oxydes ferromagnétiques de type pérovskite et à étudier leurs propriétés physiques (structurales, magnétiques, magnétocaloriques..). Nous avons commencé ce travail par la synthèse de séries de manganites à base de praséodyme ( Pr0.6-xEuxSr0.4MnO3 et Pr0.6-xErxSr0.4MnO3 ) et de lanthane ( La0.6Sr0.2Ba0.2-x□xMnO3 et (La0.6Sr0.2Ba0.2MnO3)1-x /(Co2O3)x ) en utilisant la méthode solide-solide à haute température. Les échantillons élaborés ont été caractérisés par diffractométrie de poudre RX. Les diffractogrammes obtenues ont été affinés par la méthode Rietveld en utilisant le logiciel Fullprof. L'affinement structural a montré que les manganites synthétisés se présentent sous forme de phases pures avec des raies fines et intenses sans phases parasites et cristallisent dans des structures déformées.Des mesures magnétiques (M(T) et M(H)) ont permis d'obtenir des informations sur le comportement magnétique à basse température, les transitions magnétiques et l'évaluation de l'aimantation à saturation. L'aimantation en fonction de la température montre que ces manganites présentent des transitions ferromagnétiques - paramagnétiques et que leurs températures de Curie diminuent sous l'effet de la substitution dans le cas des composés à base du praséodyme et sous l'effet de l'introduction des lacunes dans le système basé sur le lanthane. Les isothermes M (H) confirment le comportement ferromagnétique à basses températures des échantillons étudiés. A partir de ces mesures et en utilisant les relations de Maxwell, on a déterminé les variations d'entropie magnétique ∆Sm et on a évalué l'effet magnétocalorique présent dans ces matériaux. Via la connexion entre la chaleur spécifique et l'aimantation, on a déterminé la variation de la chaleur spécifique ∆Cp dans tous ces échantillons en exploitant les résultats ∆Sm. Nos résultats confirment que les grandeurs caractéristiques de l'effet magnétocalorique sont très sensibles au champ magnétique appliqué, d'où l'étude de leur dépendance en champ magnétique présente un très grand intérêt. Cette dépendance en champ magnétique de la variation d'entropie magnétique peut être exprimée selon une loi de puissance de type ∆Sm ~ a (µ0H)n où n est appelé exposant local. Cette étude permet donc d'une part, d'identifier les matériaux qui se comportent de façon similaire et les voies d'amélioration de ces propriétés et elle constitue, d'autre part, un outil intéressant permettant d'extrapoler ces propriétés dans des conditions non accessibles au laboratoire. / The studies presented in this manuscript deal with the synthesis and characterization of ferromagnetic perovskite oxides. Four material systems have been described in this work ( Pr0.6-xEuxSr0.4MnO3 et Pr0.6-xErxSr0.4MnO3 ) et lanthanum ( La0.6Sr0.2Ba0.2-x□xMnO3 et (La0.6Sr0.2Ba0.2MnO3)1-x /(Co2O3)x ) . Our samples have been synthesized using the solid-state reaction method at high temperatures. Rietveld refinement of the X-ray diffraction patterns using Fullprof program shows that all our samples are single phase and crystallize in the distorted structures. Magnetic measurements show that all our samples exhibit a paramagnetic–ferromagnetic transition with decreasing temperature. The Curie Temperature TC shifts to lower values with increasing substitution in the Pr0.6-x(Eu or Er)xMnO3 system and under the effect of barium deficiency in the La0.6Sr0.2Ba0.2-x□xMnO3 system. From the magnetization isotherms at different temperatures, magnetic entropy change ∆Sm and relative cooling power RCP have been evaluated. By means of the connection between the specific heat and the magnetization was determined the variation of the specific heat ΔCp in these samples using the results ΔSm. Our results confirm that the characteristic values of the magnetocaloric effect are very sensitive to the applied magnetic field, where the study of their dependence on magnetic field has a very great interest. For fixed temperatures, the magnetic field dependence of magnetic entropy change ∆Sm is accounted for by the n exponent, which may be derived by a numerical fitting to the formula ∆Sm ~ a (µ0H)n where a is a constant. This study allows one hand, identify materials that behave similarly and ways to improve these properties and it is, on the other hand, a useful tool to extrapolate these properties under conditions not accessible in the laboratory.
Identifer | oai:union.ndltd.org:theses.fr/2013GRENY076 |
Date | 26 June 2013 |
Creators | M'Nassri, Rafik |
Contributors | Grenoble, Université de Sfax. Faculté des sciences, Boudjada, Nassira, Cheikhrouhou, Abdelwaheb |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0025 seconds