The micro PEMFCs were designed and fabricated in-house through a deep UV lithography technique and the SU-8 photoresist was used as microstructure material for fuel cell flow-field plates. The effect of different operating parameters on micro PEMFCs performances and electrochemical impedances was experimentally investigated for three different flow-field configurations (interdigitated, mesh, and serpentine). Experiments with different cell operating temperatures, different backpressures on the H2 flow channels as well as various combinations of these parameters have been conducted for three different flow geometries. Results are presented in the form of the polarization VI curves, PI curves and impedance spectroscopy under different operating conditions. The possible transport mechanisms associated with the parametric effects were discussed. With PI and VI curve were found that, among the three flow patterns considered, significant improvements can be reached with a specified flow geometry. With impedance spectroscopy was found that, the effect of the parameters on high frequency straight line, medium frequency, and low frequency arc. The influence in terms of impedance on dynamic response of the present H2/air micro fuel cell under different operating conditions and flow geometry can be quantitatively measured.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0714105-182619 |
Date | 14 July 2005 |
Creators | Yang, Sheng-Hoang |
Contributors | Chin-Chia Su, C.-J. Ho, Shou-Shing Hsieh |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0714105-182619 |
Rights | off_campus_withheld, Copyright information available at source archive |
Page generated in 0.0019 seconds