Secure information exchanges over cyberspace is on the increase due to the convergence of wireless and mobile access technologies in all businesses. Accordingly, with the proliferation of diverse multicast group service subscriptions that are possible to co-exist within a single broadband network, there is also huge demand by the mobile subscribers to ubiquitously access these services over high speed broadband using their portable devices. Likewise, the Network Providers (NPs) invest hugely in infrastructure deployment to disseminate these services efficiently and concomitantly. Therefore, cyber security in any business is obligatory to restrict access of disseminated services to only authorised personnel. This becomes a vital requirement for a successful commercialisation of exchanged group services. The standard way to achieve cyber security in a wireless mobile multicast communication environment is through confidentiality using Group Key Management (GKM).The existing GKM schemes for secure wireless multicast from literature only target single group service confidentiality; however, the adoption of multiple group service confidentiality in them involve inefficient management of keys that induce huge performance overheads unbearable for real time computing. Therefore, a novel authenticated GKM scheme for multiple multicast group subscriptions known as slot based multiple group key management (SMGKM) is proposed. In the SMGKM, the handovers move across diverse decentralised clusters of homogeneous or heterogeneous wireless access network technologies while participating in multiple group service subscriptions. Unlike the conventional art, the SMGKM advances its security by integrating location based authentication and GKM functions. Both functions are securely offloaded from the Domain Key Distributor (DKD) to the intermediate cluster controllers, Area Key Distributors (AKDs), in a distributed fashion, using the proposed location based authenticated membership list (SKDL). A significant upgrade of fast handoff performance with reduced performance overheads of the SMGKM scheme is achieved. The developed numerical analysis and the simulation results display significant resource economy in terms of reduced rekeying transmission, communication bandwidth and storage overheads while providing enhanced security. The performance of the SMGKM in a high speed environment is also evaluated and has demonstrated that SMGKM outperforms the previous work. Finally, the SMGKM correctness against various attacks is verified using BAN logic, the eminent tool for analysing the widely deployed security protocols. The security analysis demonstrates that SMGKM can counteract the security flaws and redundancies identified in the chosen related art.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:732144 |
Date | January 2015 |
Creators | Mapoka, Trust Tshepo |
Publisher | University of Bradford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/10454/14468 |
Page generated in 0.0022 seconds