Return to search

Personalized question-based cybersecurity recommendation systems

En ces temps de pandémie Covid19, une énorme quantité de l’activité humaine est modifiée pour se faire à distance, notamment par des moyens électroniques. Cela rend plusieurs personnes et services vulnérables aux cyberattaques, d’où le besoin d’une éducation généralisée ou du moins accessible sur la cybersécurité. De nombreux efforts sont entrepris par les chercheurs, le gouvernement et les entreprises pour protéger et assurer la sécurité des individus contre les pirates et les cybercriminels. En raison du rôle important joué par les systèmes de recommandation dans la vie quotidienne de l'utilisateur, il est intéressant de voir comment nous pouvons combiner les systèmes de cybersécurité et de recommandation en tant que solutions alternatives pour aider les utilisateurs à comprendre les cyberattaques auxquelles ils peuvent être confrontés. Les systèmes de recommandation sont couramment utilisés par le commerce électronique, les réseaux sociaux et les plateformes de voyage, et ils sont basés sur des techniques de systèmes de recommandation traditionnels.
Au vu des faits mentionnés ci-dessus, et le besoin de protéger les internautes, il devient important de fournir un système personnalisé, qui permet de partager les problèmes, d'interagir avec un système et de trouver des recommandations.
Pour cela, ce travail propose « Cyberhelper », un système de recommandation de cybersécurité personnalisé basé sur des questions pour la sensibilisation à la cybersécurité.
De plus, la plateforme proposée est équipée d'un algorithme hybride associé à trois différents algorithmes basés sur la connaissance, les utilisateurs et le contenu qui garantit une recommandation personnalisée optimale en fonction du modèle utilisateur et du contexte. Les résultats expérimentaux montrent que la précision obtenue en appliquant l'algorithme proposé est bien supérieure à la précision obtenue en utilisant d'autres mécanismes de système de recommandation traditionnels. Les résultats suggèrent également qu'en adoptant l'approche proposée, chaque utilisateur peut avoir une expérience utilisateur unique, ce qui peut l'aider à comprendre l'environnement de cybersécurité. / With the proliferation of the virtual universe and the multitude of services provided by the World Wide Web, a major concern arises: Security and privacy have never been more in jeopardy. Nowadays, with the Covid 19 pandemic, the world faces a new reality that pushed the majority of the workforce to telecommute. This thereby creates new vulnerabilities for cyber attackers to exploit. It’s important now more than ever, to educate and offer guidance towards good cybersecurity hygiene. In this context, a major effort has been dedicated by researchers, governments, and businesses alike to protect people online against hackers and cybercriminals.
With a focus on strengthening the weakest link in the cybersecurity chain which is the human being, educational and awareness-raising tools have been put to use. However, most researchers focus on the “one size fits all” solutions which do not focus on the intricacies of individuals. This work aims to overcome that by contributing a personalized question-based recommender system. Named “Cyberhelper”, this work benefits from an existing mature body of research on recommender system algorithms along with recent research on non-user-specific question-based recommenders.
The reported proof of concept holds potential for future work in adapting Cyberhelper as an everyday assistant for different types of users and different contexts.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/26074
Date08 1900
CreatorsMoukala Both, Suzy Edith
ContributorsAïmeur, Esma
Source SetsUniversité de Montréal
LanguageEnglish
Detected LanguageFrench
Typethesis, thèse
Formatapplication/pdf

Page generated in 0.005 seconds