Return to search

Optimum response contactor servomechanism

This thesis deals with the design of simple circuits to realize the optimum second order contactor type servo. The analysis is based on the generation of a switching function so that torque reversal will occur at the point where the generated function g(t) intersects the error function e(t). The conventional
treatment differs from the above method in that the required switching boundary relationship, f(ė), between e and e^° is obtained so that voltage proportional to e-f(e^°) is used as the switching signal.
Using a d-c shunt motor or an induction motor, analysis and design of optimum systems based on the generated function treatment had been carried out taking into account the actual motor characteristics and relay time delay. An optimum relay servo for a 1/50 h.p. Ford induction motor was constructed on this principle and tested. The simplicity of the circuits involved makes this design highly practical.
The optimization of a second order contactor servo can also be accomplished by approximating the optimum switching boundary with a simple lead network. A servo system using the same 1/50 h.p. induction motor was built according to this method. This approach results in a simpler circuit than the former; however, it has a larger dead zone and is only applicable with an a-c servo motor.
A brief discussion of the possiblity of employing the generated function technique to the analysis of a 3rd order system was also made. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/39613
Date January 1961
CreatorsButt, Chak Ying
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.0018 seconds