Return to search

The medicinal chemistry of cyclo (Ser-Ser) and cyclo (Ser-Tyr)

Cyclic dipeptides are widely used as models for larger peptides because of their simplicity and limited conformational freedom. Some cyclic dipeptides have been shown to produce antiviral, antibiotic and anti-tumour activity (Milne et al., 1998). In this study the cyclic dipeptides, cyclo(Ser-Ser) and cyclo(Ser-Tyr), were synthesised from their corresponding linear precursors using a modified phenolinduced cyclisation procedure. The phenol-induced cyclisation procedure resulted in good yields and purity of the cyclic dipeptides. Quantitative analysis and evaluation of the physicochemical properties of the cyclic dipeptides was achieved by using high-performance liquid chromatography, scanning electron microscopy, thermal analysis and X-ray powder diffraction. The structures of the synthesised cyclic dipeptides were elucidated using infrared spectroscopy, mass spectrometry, nuclear magnetic resonance spectroscopy and molecular modelling. The study aimed to determine the biological activity of cyclo(Ser-Ser) and cyclo(Ser-Tyr) with respect to their anticancer, antimicrobial, haematological and cardiac effects. Anticancer studies revealed that cyclo(Ser-Ser) and cyclo(Ser- Tyr) inhibited the growth of HeLa (cervical cancer), HT-29 (colon cancer) and MCF (breast cancer) cancer cell lines. Both cyclic dipeptides also inhibited the growth of certain selected Gram-positive, Gram-negative and fungal microorganisms in the antimicrobial study. Although the inhibition of growth in the anticancer and antimicrobial studies was statistically significant, the clinical relevance is questionable, since the inhibition produced by both cyclic dipeptides was very limited compared to other pre-existing anticancer and antimicrobial agents. Cyclo(Ser-Tyr) exhibited significant activity in the haematological studies, where it increased the rate of calcium induced-coagulation, and decreased the rate of streptokinase-induced fibrinolysis. Both cyclic dipeptides, however, failed to produce any significant effects on thrombin-substrate binding and ADPinduced platelet aggregation. Cardiac studies revealed that cyclo(Ser-Ser) and especially cyclo(Ser-Tyr) reduced the heart rate, coronary flow rate and ventricular pressure of isolated rat hearts.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nmmu/vital:10155
Date January 2007
CreatorsKritzinger, André Louis
PublisherNelson Mandela Metropolitan University, Faculty of Health Sciences
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Masters, MSc
Formatxxvi, 269 leaves ; 30 cm, pdf
RightsNelson Mandela Metropolitan University

Page generated in 0.0021 seconds