Return to search

Synthesis and properties of giant porphyrin nanorings

Fully conjugated porphyrin nanorings combine an end-free π-system with well defined size and shape. They provide models for testing our understanding of light harvesting in natural photosynthetic systems, and may lead to the creation of new functional materials. This thesis describes the template-directed synthesis of novel 10, 16, 18, 20, 24, 30, 40 and 50-porphyrin nanorings using small templates, as well as the investigation of their structure, electronic properties and supramolecular chemistry in solution and on surfaces. This work illustrates the scope of Vernier templating as a tool for the synthesis of monodisperse molecules of unprecedented sizes. Chapter 1 introduces key properties of porphyrins and π-conjugated linear and cyclic porphyrin oligomers and describes the principle methods of preparing non-conjugated and conjugated cyclic polymers. It also covers recent advances in the synthesis of fully-conjugated porphyrin nanorings, in particular Vernier templating. Chapter 2 discusses the formation of higher order porphyrin nanorings (18- and 24-porphyrin nanorings) in the classical synthesis of 6-porphyrin nanoring and the Vernier-templated synthesis of 12-porphyrin nanoring. Chapter 3 describes the Vernier-templated synthesis of 24-porphyrin nanoring and its characterization. Chapter 4 shows that the flexibility of 24-porphyrin nanoring can be locked by the formation of a “sandwich” complex in the presence of a bidentate ligand or by solvent-induced formation of aggregates. Chapter 5 demonstrates the use of templates to control the cyclooligomerization of linear porphyrin oligomers. Vernier-templated synthetic routes to 10-, 30- and 40-porphyrin nanorings are investigated. Chapter 6 reports the electronic properties of porphyrin nanorings as probed by electrochemistry (for 6 porphyrin nanoring) or fluorescence anisotropy measurements (for 24 porphyrin nanoring). Crystal structures of 6 and 12 porphyrin nanoring template complexes are presented. Chapter 7 contains experimental procedures and characterization data of known and novel compounds synthesized in the course of this thesis.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:669900
Date January 2013
CreatorsKondratiuk, Dmitry
ContributorsAnderson, Harry L.
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:73c76c1a-2124-4bb8-91a1-893f841a80a1

Page generated in 0.0018 seconds