Entomopathogenic nematodes (EPN) (Heterorhabditis bacteriophora and H. megidis) and entomopathogenic fungi (EPF) (Metarhizium anisopliae and Beauveria bassiana) were evaluated for efficacy against masked chafer white grub, Cyclocephala spp., under laboratory and greenhouse conditions, as well as their efficacy against various grub stages in the field. Under both laboratory and greenhouse conditions, additive interactions were found between EPN and EPF in their combined application against Cyclocephala spp., except a few observations that showed antagonism or synergism. Significantly greater control occurred from the combination of a nematode and a fungus compared with a fungus alone, but not compared with a nematode alone. The combined effect did not differ significantly for nematode and fungi applied simultaneously or at different times. EPF had no significant impact on EPN infection and production of infective juveniles (IJs) in grub carcasses. Nematodes alone or in combination with fungi were comparable to the insecticide Merit 75 WP (imidacloprid) against 3rd instar Cyclocephala spp in the greenhouse. Efficacy of EPF and EPN varied dramatically between field sites and conditions; EPN and EPF applied alone or in combination were less effective than Merit 75 WP in >50% field trials, but some EPN + EPF treatments were more effective than the insecticide in reducing grub numbers. EPN and EPF showed better potential than insecticides for providing extended control of white grubs in the subsequent generation. In addition, the sub-lethal effects of EPF on southern masked chafer, C. lurida, were investigated. Neither M. anisopliae nor B. bassiana had a sub-lethal effect on grub weight gain, adult longevity, oviposition, pupation and eclosion. Finally, interaction between H. bacteriophora and M. anisopliae was examined to determine the potential of the nematode in improving fungal distribution in soil. H. bacteriophora enhanced fungal distribution in sandy loam soil without grass thatch, but not in sandy soil with thatch. In both soil types, soil depths significantly affected nematode and fungal distribution. In water profile, M. anisopliae conidia germinated hyphae that attached to sheath of H. bacteriophora IJs, which molted to detach from the fungus. IJs mortality and virulence were not affected by the presence of M. anisopliae. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/50620 |
Date | 07 May 2013 |
Creators | Wu, Shaohui |
Contributors | Entomology, Kok, Loke T., Youngman, Roger R., Pfeiffer, Douglas G., Paulson, Sally L., Goatley, James M. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.002 seconds