Return to search

On-surface fabrication of functional molecular nanomaterials

Polyzyklische organische Moleküle und deren Derivate sind eine Klasse von Nanostrukturen, die wegen diverser möglicher Anwendungen in molekularer und organischer Elektronik viel Aufmerksamkeit in der Wissenschaft erregt haben. Um ihre einzigartigen Eigenschaften in vollem Umfang auszunutzen, muss man das Verhalten von molekularen Systemen auf der Nanoskala verstehen und eine Reihe von Herstellungsverfahren entwickeln. In dieser Arbeit werden molekulare Nanostrukturen durch den Bottom-Up-Ansatz der Oberflächensynthese erzeugt. Als Untersuchungsmethode gilt Rastertunnelmikroskopie (STM) bei tiefen Temperaturen und im Ultrahochvakuum als Werkzeug der Wahl. Drei verschiedene molekulare Systeme werden ausführlich erforscht, mit dem Ziel organische Nanostrukturen mit gewünschten Eigenschaften und atomarer Präzision zu erzeugen.
Im ersten Teil dieser Arbeit wird eine Cyclodehydrierungsreaktion erfolgreich für die Synthese von asymmetrischen Starphen verwendet. Es wird dann gezeigt, dass dieses Molekül als unimolekulares NAND-Logikgatter fungieren kann. Dabei wird die Positionierungsänderung der elektronischen Resonanz nach der Zufügung einzelner Goldatome an die Inputs des Moleküls gemessen. Eine Kombination aus atomarer und molekularer Lateralmanipulation mithilfe der Spitze des Rastertunnelmikroskops sowie Rastertunnelspektroskopie wird verwendet, um dieses Verhalten zu demonstrieren. Die steuerbare Verschiebung von molekularen Resonanzen entsteht wegen der asymmetrischen Form des Starphens und wurde theoretisch vorhergesagt.
Molekulare Drähte werden im zweiten Teil der Arbeit durch die oberflächenassistierte Ullmann-Kupplung hergestellt. Ihr Baustein besteht aus abwechselnden Donor- und Akzeptorgruppen und wurde speziell vorgesehen, um leitfähige flexible molekulare Drähte herzustellen. Die Leitfähigkeit wird durch Ziehen einzelner Drähten von der Oberflächen mit der STM-Spitze gemessen. Theoretische Berechnungen der komplexen Bandstruktur der molekularen Drähte bestätigen die experimentellen Ergebnisse und unterstützen dabei die Wichtigkeit der Balance zwischen Akzeptor- und Donorgruppen für die Leitfähigkeit der Drähte.
Basierend auf diesen Resultaten werden neue Strukturen zur Herstellung vorgeschlagen.
Der letzte Teil befasst sich schließlich mit einer unimolekularen Reaktion, die zur Erzeugung einer anomalen Kombination von Pentagon- und Heptagonringen in einem einzelnen organischen Molekül führt. Solche 5-7-Einheiten sind analog zu Stone-Wales-Defekten in Graphen und können elektronische Eigenschaften beachtlich ändern. Die exakte intramolekulare Struktur der Reaktionsprodukte wird durch hochauflösende STM-Bildgebung mit funktionalisierter Spitze eindeutig zugeordnet und zusätzlich durch DFT-Rechnungen bestätigt. / Polycyclic organic molecules and their derivatives present the class of nanostructures that are currently in the focus of scientific research due to their perspectives for the versatile applications in molecular and organic electronics. To exploit their unique properties to full extent, one has to understand the behavior of molecular systems at the nanoscale and to develop a set of fabrication methods. In this work, molecular nanostructures are fabricated using the bottom-up on-surface synthesis approach, which allows precision of the desired products and control over their properties through careful precursors design. To study the reaction flow and the properties of the formed structures, scanning tunneling microscopy (STM) at low temperature and in ultra-high vacuum is the tool of choice. In this work, three molecular systems are studied in detail, with the focus of fabricating atomically precise nanostructures with tailored properties.
A cyclodehydrogenation reaction is successfully applied to synthesize an asymmetric starphene molecule in the first part of the work. It is then shown that this molecule can function as a unimolecular NAND logic gate with its response to the attached single Au atoms measured as the position of the electronic resonance. A combination of the atomic and molecular lateral manipulation with the STM tip and scanning tunneling spectroscopy (STS) is used to demonstrate this behavior. The effect of the controllable shifting of the molecular resonances is due to the asymmetric shape of the starphene molecule and was initially predicted theoretically.
More complex structures, molecular wires, are presented in the second part of the work by using the surface-assisted Ullmann coupling reaction. The monomer unit, consisting of the alternant donor and acceptor parts, was specifically designed to achieve highly-conductive flexible molecular wires. The conductance is measured by pulling the single wires with the STM tip off the surface. Theoretical calculations of the complex band structure of the wires confirm the obtained results and support the discussion of the importance of the balance between the strength of acceptor and donor units for the conductance of the resultant wires. Based on this, some model structures are proposed.
Finally, the last part deals with a unimolecular reaction to create an anomalous combination of pentagon and heptagon rings in a single organic molecule. Such 5-7 moieties are analogous to the Stone-Wales defects in graphene and may significantly alter the electronic properties. The precise intramolecular structure of the reaction products is unambiguously assigned by high-resolution STM imaging with functionalized tips and further confirmed by DFT calculations.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:36435
Date05 December 2019
CreatorsSkidin, Dmitry
ContributorsCuniberti, Gianaurelio, Nielsch, Kornelius, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0041 seconds