In biological systems, most of the active organic molecules are chiral. Some of the main constituents of living organisms are amino acids and sugars. They exist predominantly in only one enantiomerically pure form. For example, our proteins are built-up by L-amino acids and as a consequence they are enatiomerically pure and will interact in different ways with enantiomers of chiral molecules. Indeed, different enantiomers or diastereomers of a molecule could often have a drastically different biological activity. It is of paramount importance in organic synthesis to develop new routes to control and direct the stereochemical outcome of reactions. The aim of this thesis is to investigate new protocols for the synthesis of complex chiral molecules using simple, environmentally friendly proline-based organocatalysts. We have investigated, the aziridination of linear and branched enals, the stereoselective synthesis of β-amino acids with a carbene co-catalyst, the synthesis of pyrazolidines, the combination of heterogeneous transition metal catalysis and amine catalysis to deliver cyclopentenes bearing an all-carbon quaternary stereocenter and a new heterogeneous dual catalyst system for the carbocyclization of enals. The reactions presented in this thesis afforded the corresponding products with high levels of chemo-, diastero- and enantioselectivity. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 5: Submitted. </p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-94680 |
Date | January 2013 |
Creators | Deiana, Luca |
Publisher | Stockholms universitet, Institutionen för organisk kemi, Stockholm : Department of Organic Chemistry, Stockholm University |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds