Return to search

MECHANISMS OF RESISTANCE TO HALOGENATED AND NON-HALOGENATED AHR LIGANDS IN CHRONICALLY CONTAMINATED KILLIFISH POPULATIONS

Chronically contaminated killifish from Newark Bay (NB) NJ, and New Bedford Harbor (NBH) MA, have developed resistance to halogenated aromatic hydrocarbons that bind to and activate the aryl hydrocarbon receptor (AHR). To study the mechanisms of resistance, adult killifish were exposed to halogenated and non-halogenated AHR ligands and enzymatic and toxicological endpoints were measured in adult and embryonic fish.
The chlorinated and non-chlorinated AHR ligands 3,34,4-tetrachlorobiphenyl (PCB77) and benzo-a-pyrene (B[a]P) induced cytochrome P450 1A (CYP1A) in reference site, but not in NB killifish. Expression of CYP3A (not part of the AHR gene battery) was inducible only in Flax Pond killifish. Basal expression of the phase II enzyme glutathione-s-transferase (GST) was higher in NB killifish. These results suggest that NB killifish are resistant to CYP1A induction by chlorinated and non-chlorinated AHR ligands. Higher basal GST activity observed in NB killifish could be protective against toxicity caused by contaminants found in this site. Activation of AHR and induction of CYP1A, by AHR ligands has been associated with the toxic effects caused by these chemicals. To determine the association between resistance to CYP1A induction and the toxicity caused by AHR ligands, CYP1A activity, developmental deformities and reactive oxygen species (ROS) production were measured in reference site and contaminated (NB and NBH) killifish embryos exposed to AHR ligands. 3,34,45-pentachlorobiphenyl (PCB126) and 3-methylcholantherene (3-MC) induced CYP1A, and ROS production in reference site embryos. NB and NBH embryos were resistant to PCB126 induction of CYP1A, but responded to 3-MC. Killifish embryos from NB and NBH were resistant to PCB126 induced deformities. PCB126 and 3-MC did not increase ROS production in NB or NBH killifish embryos. Alpha-naphthoflavone (ANF) (an AHR/CYP1A inhibitor) blocked PCB126 mediated deformities and CYP1A induction in reference site embryos, but increased ROS production. The P450 inhibitor, piperonyl butoxide (PBO) was able to block PCB126 mediated induction of CYP1A activity and ROS production. These results suggest that PCB126 induced deformities are dependent on activation of AHR and CYP1A induction. In chronically contaminated killifish populations, loss of sensitivity to coplanar PCBs and PAHs could be through reduced expression of AHR, or altered DNA sequence or methylation status of the CYP1A gene promoter. Hepatic AHR expression, measured by photoaffinity labeling, was lower in NB killifish than reference site animals, suggesting that NB killifish express less AHR protein. DNA sequence analysis did not reveal considerable differences between contaminated and reference site populations, however additional DNA fragments were observed in some promoters but not in others. The methylation of the CYP1A promoters was studied using methylation sensitive restriction enzymes and no differences were detected between reference site and NB killifish. Treatment with the DNA methyltransferase inhibitor AzaC did not restore CYP1A induction by PCB126 in NB killifish. These studies suggest that resistance to activation of AHR and induction of xenobiotic activating enzymes (CYP1A and CYP3A) in combination with increased expression of conjugating enzymes (GST) protects chronically contaminated killifish against these chemicals.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_diss-1473
Date01 January 2004
CreatorsArzuaga, Xabier
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of Kentucky Doctoral Dissertations

Page generated in 0.0016 seconds