Les travaux présentés dans cette thèse concernent le thème des fonctionnalités visuelles qu'il convient d'embarquer sur un robot mobile, afin qu'il puisse se déplacer dans son environnement. Plus précisément, ils ont trait aux méthodes de perception par vision stéréoscopique dense, de modélisation de l'environnement par grille d'occupation, et de suivi visuel d'objets, pour la navigation autonome d'un robot mobile dans un environnement d'intérieur. Il nous semble important que les méthodes de perception visuelle soient à la fois robustes et rapide. Alors que dans les travaux réalisés, on trouve les méthodes globales de mise en correspondance qui sont connues pour leur robustesse mais moins pour être employées dans les applications temps réel et les méthodes locales qui sont les plus adaptées au temps réel tout en manquant de précision. Pour cela, ce travail essaye de trouver un compromis entre robustesse et temps réel en présentant une méthode semi-locale, qui repose sur la définition des distributions de possibilités basées sur une formalisation floue des contraintes stéréoscopiques. Il nous semble aussi important qu'un robot puisse modéliser au mieux son environnement. Une modélisation fidèle à la réalité doit prendre en compte l'imprécision et l'incertitude. Ce travail présente une modélisation de l'environnement par grille d'occupation qui repose sur l'imprécision du capteur stéréoscopique. La mise à jour du modèle est basée aussi sur la définition de valeurs de crédibilité pour les mesures prises. Enfin, la perception et la modélisation de l'environnement ne sont pas des buts en soi mais des outils pour le robot pour assurer des tâches de haut niveau. Ce travail traite du suivi visuel d'un objet mobile comme tâche de haut niveau.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00932829 |
Date | 12 December 2012 |
Creators | Ghazouani, Haythem |
Publisher | Université Montpellier II - Sciences et Techniques du Languedoc |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0025 seconds