Cette thèse concerne la séparation aveugle de sources, qui consiste à estimer un ensemble de signaux sources inconnus à partir d'un ensemble de signaux observés qui sont des mélanges à paramètres inconnus de ces signaux sources. C'est dans ce cadre que le travail de recherche de cette thèse concerne le développement et l'utilisation de méthodes linéaires innovantes de séparation de sources pour des applications en imagerie de télédétection spatiale. Des méthodes de séparation de sources sont utilisées pour prétraiter une image multispectrale en vue d'une classification supervisée de ses pixels. Deux nouvelles méthodes hybrides non-supervisées, baptisées 2D-Corr-NLS et 2D-Corr-NMF, sont proposées pour l'extraction de cartes d'abondances à partir d'une image multispectrale contenant des pixels purs. Ces deux méthodes combinent l'analyse en composantes parcimonieuses, le clustering et les méthodes basées sur les contraintes de non-négativité. Une nouvelle méthode non-supervisée, baptisée 2D-VM, est proposée pour l'extraction de spectres à partir d'une image hyperspectrale contenant des pixels purs. Cette méthode est basée sur l'analyse en composantes parcimonieuses. Enfin, une nouvelle méthode est proposée pour l'extraction de spectres à partir d'une image hyperspectrale ne contenant pas de pixels purs, combinée avec une image multispectrale, de très haute résolution spatiale, contenant des pixels purs. Cette méthode est fondée sur la factorisation en matrices non-négatives couplée avec les moindres carrés non-négatifs. Comparées à des méthodes de la littérature, d'excellents résultats sont obtenus par les approches méthodologiques proposées.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00790655 |
Date | 17 December 2012 |
Creators | Karoui, Moussa Sofiane |
Publisher | Université Paul Sabatier - Toulouse III |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds