Return to search

Dielectric barrier discharges : a promising tool for the fabrication of anti-fogging coatings

La « vue floue » typique des surfaces embuées peut être extrêmement frustrante. Des exemples tels que les lunettes qui s’embuent pendant l’activité physique, la condensation qui se forme à l’intérieur des fenêtres pendant l’hiver ou les miroirs qui se couvrent de buée pendant la douche le démontrent. En outre, la présence de buée sur les surfaces cause des effets néfastes dans certains secteurs d’activité comme l’industrie automobile (pare-brise et rétroviseurs), l’industrie optique (objectifs, caméras, télescopes et capteurs), l’industrie solaire (modules photovoltaïques), l’industrie alimentaire (emballages d’aliments) et le secteur médical (lunettes et endoscopes). Au cours de la dernière décennie, l’application de revêtements (super)hydrophiles a suscité un intérêt croissant, en raison de leur capacité d’atténuer les effets de la buée. Leur principe de fonctionnement repose sur l’utilisation de matériaux interagissant avec les gouttes d’eau pour en modifier leur morphologie, générant une couche mince d’eau sur la surface. Ainsi, la lumière incidente n’est pas dispersée et les effets de la buée sont amoindris. Jusqu’à présent, la plupart des techniques de dépôt explorées pour produire des revêtements (super) hydrophiles sont inaccessibles à la production de masse en raison de leur nature multiétape. Pour cette raison, l’exploration de techniques adaptées à ce type de production, telles que les décharges à barrière diélectrique à pression atmosphérique (AP-DBD), un type de procédé de dépôt chimique en phase vapeur assisté par plasma (AP-PECVD), est cruciale afin d’élargir l’utilisation des revêtements antibuée au-delà du laboratoire. Dans un procédé AP-PECVD contrôlé par des barrières diélectriques (AP-DBD), certains précurseurs inorganiques ou organométalliques (e.g., TiCl4, TiN, SiH4, Si2O(CH3)2) sont introduits entre deux électrodes parallèles avec un gaz vecteur (e.g., N2, Ar, He) à la pression atmosphérique, où ils se fragmentent à la suite d’interactions avec les espèces du plasma. Les fragments résultants réagissent les uns avec les autres ou avec le substrat afin de produire les espèces réactives requises au dépôt du revêtement. Les caractéristiques structurelles et fonctionnelles des revêtements PECVD (e.g., la rugosité de surface, la biocompatibilité, les propriétés optiques et de mouillage) dépendent des certains paramètres de dépôt, tels que la puissance dissipée dans la décharge, le type de décharge, la concentration de précurseurs et le débit de gaz. La possibilité de se procurer des échantillons de verre dotés de la propriété antibuée via APPECVD a été démontrée dans cette thèse. En contrôlant les paramètres de dépôt, les revêtements antibuée ont été préparés en utilisant du 1,3,5,7-tétraméthylcyclotétrasiloxane (Si4O4H4(CH3)4) et de l’oxyde nitreux (N2O) au moyen d’une DBD fonctionnant en N2 à la pression atmosphérique. Dans le cas des revêtements fabriqués dans des conditions statiques (aucun mouvement entre l’échantillon de verre et les électrodes), l’évaluation quantitative de la résistance à la buée (ASTM F 659-06) a révélé que les revêtements obtenus avec un rapport [N2O]/[TMCTS] ³ 30 ou avec une puissance dissipée ³ 0,25 W cm-2 sont antibuée (transmittance > 80%) en raison de leur nature hydrophile. La quantité de précurseur et d’oxydant injectée dans la décharge, exprimée par la somme « [N2O] + [TMCTS] », n’agissait que peu sur la performance antibuée. En l’absence de changements significatifs dans la rugosité de surface (Rrms et Ra étant compris entre 3 et 6 nm), l’origine de la performance antibuée a été attribuée à la chimie de surface. Couplé aux rapports O/Si (résultats XPS), un paramètre arbitraire, appelé « rapport d’embuage » a été défini en considérant les résultats FTIR pour expliquer les performances antibuée observées. On a pu constater qu’un rapport O/Si ≥ 2,3 couplé à un rapport d’embuage dans l’intervalle de 0-0,10, résultant de la présence de fonctionnalités hydrophiles, telles que les groupes silanol, hydroxyle, carboxyle or ester à la surface étaient nécessaires pour atteindre la propriété antibuée. Par ailleurs, les revêtements préparés dans des conditions dynamiques utilisant trois autres précurseurs aux structures différentes quant à la présence d’un cycle et au nombre de groupes Si-H et Si-CH3 (l’octaméthylcyclotétrasiloxane, le 1,1,3,3-tétraméthyldisiloxane et l’hexaméthyldisiloxane) n’étaient pas antibuée. Ce résultat porte à croire que la structure cyclique du TMCTS et la forte réactivité des liaisons Si-H est à l’origine de la formation de ces fonctionnalités hydrophiles et par conséquent, à la performance antibuée observée dans les verres traités en injectant du TMCTS dans la décharge plasma. / Experience shows that the “blurred view” typical of fogged surfaces can be incredibly frustrating. Eyewear fogging up during physical activity, condensation forming on the inside of windows during the winter, or bathroom mirrors steaming up when taking a shower are some obvious examples. In addition to being upsetting, the fogging of surfaces has been reported to cause adverse effects on sectors of activity as diverse as the automotive industry (e.g., windshield glass and rearview mirrors), the optical industry (e.g., lenses, cameras, telescopes, and sensors), the solar industry (e.g., photovoltaic modules), the food industry (e.g., food packaging), and medicine (e.g., goggles and endoscopes). Over the last decade, interest has been growing in the application of hydrophilic and superhydrophilic coatings, as they can efficiently mitigate the effects of fogging by changing the morphology of fog drops. The working principle of a (super)hydrophilic surface is based on the use of materials producing a thin film of water on the solid surface on interaction with fog drops. As a result, incident light transmits without being scattered and the effects of fogging are minimized. Unfortunately, most of the deposition techniques used thus far for the fabrication of (super)hydrophilic coatings involves multiple steps, thus making their integration into mass production a challenging task. For this reason, the exploration of deposition techniques adapted for large-scale production is crucial to broaden the range of application of antifogging coatings beyond the laboratory. In this regard, numerous studies on the use of dielectric barriers in plasma enhanced chemical vapor deposition at atmospheric pressure (AP-PECVD) are strongly emerging to address this issue. In a typical AP-PECVD controlled by dielectric barriers, inorganic or organometallic precursors (e.g., TiCl4, TiN, SiH4, Si2O(CH3)2) are introduced between two parallel electrodes along with a carrier gas (e.g., N2, Ar, He) at atmospheric pressure where, on interaction with plasma species, undergo fragmentation. The resulting fragments can react with the substrate or with each other to produce short-lived species required for coating deposition. The structural and functional features of PECVD coatings (e.g., surface roughness, biocompatibility, wetting and optical properties) depend on several deposition parameters, including the power dissipated in the discharge, type of plasma discharge, precursor concentration, and the flow rate of gases. With this in mind, the feasibility of conferring fogging resistance to commercial glass samples via AP-PECVD has been demonstrated in this doctoral thesis. By appropriately controlling the deposition parameters, anti-fogging coatings were prepared using 1,3,5,7- tetramethylcyclotetrasiloxane (Si4O4H4(CH3)4) and nitrous oxide (N2O) by a dielectric barrier discharge operated in N2 at atmospheric pressure (AP-DBD). When coating deposition was conducted in static conditions, that is, with no relative movement between the glass sample and the electrodes, quantitative assessment of the fogging resistance (ASTM F 659-06 standard) revealed that coatings obtained under [N2O]/[TMCTS] ratios ³ 30 or under a dissipated power ³ 0.25 W cm-2 endowed glass samples with the anti-fogging property (transmittance > 80%), because of their hydrophilic nature. In terms of the [N2O] + [TMCTS] sum, the amount of TMCTS and N2O injected into the discharge did not appear to have a great impact on the anti-fogging performance. Indeed, as no significant changes in surface roughness were observed (Rrms and Ra were between 3 and 6 nm), the origin of the anti-fogging performance was attributed to the surface chemistry. To this end, an arbitrary parameter, called “fogging ratio”, was defined considering FTIR results to account for, along with O/Si ratios (XPS results), the observed anti-fogging performance. Fogging ratios in the 0-0.10 range coupled with O/Si ratios ³ 2.3, resulting from the presence of hydrophilic functionalities, such as silanol (Si-OH), hydroxyl (C-OH) carboxyl (COOH), and ester (COOR) groups at the coating surface were necessary to attain the anti-fogging property. Interestingly, coatings prepared in dynamic conditions using three other precursors with different structures and different number of Si-H and Si-CH3 groups; namely, octamethylcyclotetrasiloxane (OMCTS), 1,1,3,3-tetramethyldisiloxane (TMDSO), and hexamethyldisiloxane (HMDSO) were not fogging-resistant. This result leads us to believe that the cyclic structure of TMCTS in conjunction with the high reactivity of Si-H bonds is behind the formation of the above-mentioned hydrophilic functionalities, and thus the antifogging performance of TMCTS-coated glasses.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/66960
Date04 February 2021
CreatorsRodríguez Durán, Iván
ContributorsLaroche, Gaétan
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxxiii, 265 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0033 seconds