Ce travail s'inscrit dans le contexte des métamatériaux microondes avec possibilité de les accorder par films minces ferroélectriques. Nous étudions dans un premier temps l'extraction de la permittivité complexe d'un film mince de Ba0.5Sr0.5TiO3 (BST) déposé par voie sol-gel. Alors que la plupart des études sur les matériaux ferroélectriques présentent des résultats à relativement basses fréquences (souvent quelques dizaines de gigahertz), la caractérisation de la fonction diélectrique du BST est ici effectuée dans une très large gamme de fréquences (1MHz - 2.6THz). Ces mesures ont permis de mettre en évidence une dispersion de la permittivité complexe suivant un modèle de type Cole-Cole, traduisant une distribution des temps de relaxation. L'intégration de ces films minces dans des structures microondes est ensuite effectuée. Des circuits déphaseurs, éléments de base de la commande d'une antenne à balayage électronique, sont considérés. D'une part, des lignes classiques à retard de phase sont caractérisées et montrent des performances atteignant un déphasage différentiel de 360° à 30 GHz sous 40 Volts. D'autre part, des lignes à avance de phase sont conçues et caractérisées pour fonctionner en régime composite équilibré. Le point particulier d'indice nul en régime superluminal voit sa fréquence changer en tension avec le glissement du diagramme de dispersion. Les micro-résonateurs, permettant de créer un moment magnétique artificiel, peuvent aussi tirer profit du changement de permittivité des films minces de BST pour accorder les caractéristiques de transmission-réjection de lignes de transmission chargées par ces résonateurs. Ici, cette propriété est démontrée en technologie microruban. Une microstructuration du film ferroélectrique est réalisée réduisant le dépôt à la zone d'agilité, entraînant une réduction des pertes diélectriques. Enfin, la propriété de réfraction négative des métamatériaux est démontrée par la fabrication d'un prototype fonctionnant en régime composite équilibré dans les bandes X et Ku. Les étapes de conception par simulations numériques permettent de mettre en évidence les trois zones principales du diagramme de dispersion où la réfraction est respectivement négative, nulle et positive. Ces résultats sont vérifiés expérimentalement par la mesure de l'amplitude de l'onde réfractée à l'aide d'un dispositif de type goniomètre.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00431413 |
Date | 22 October 2009 |
Creators | Houzet, Grégory |
Publisher | Université des Sciences et Technologie de Lille - Lille I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds