Ma thèse a pour but l'étude des désignations nominales des événements pour l'extraction automatique. Mes travaux s'inscrivent en traitement automatique des langues, soit dans une démarche pluridisciplinaire qui fait intervenir linguistique et informatique. L'extraction d'information a pour but d'analyser des documents en langage naturel et d'en extraire les informations utiles à une application particulière. Dans ce but général, de nombreuses campagnes d'extraction d'information ont été menées~: pour chaque événement considéré, il s'agit d'extraire certaines informations relatives (participants, dates, nombres, etc.). Dès le départ, ces challenges touchent de près aux entités nommées (éléments " notables " des textes, comme les noms de personnes ou de lieu). Toutes ces informations forment un ensemble autour de l'événement. Pourtant, ces travaux ne s'intéressent que peu aux mots utilisés pour décrire l'événement (particulièrement lorsqu'il s'agit d'un nom). L'événement est vu comme un tout englobant, comme la quantité et la qualité des informations qui le composent. Contrairement aux travaux en extraction d'informations générale, notre intérêt principal est porté uniquement sur la manière dont sont nommés les événements qui se produisent et particulièrement à la désignation nominale utilisée. Pour nous, l'événement est ce qui arrive, ce qui vaut la peine qu'on en parle. Les événements plus importants font l'objet d'articles de presse ou apparaissent dans les manuels d'Histoire. Un événement peut être évoqué par une description verbale ou nominale. Dans cette thèse, nous avons réfléchi à la notion d'événement. Nous avons observé et comparé les différents aspects présentés dans l'état de l'art jusqu'à construire une définition de l'événement et une typologie des événements en général, et qui conviennent dans le cadre de nos travaux et pour les désignations nominales des événements. Nous avons aussi dégagé de nos études sur corpus différents types de formation de ces noms d'événements, dont nous montrons que chacun peut être ambigu à des titres divers. Pour toutes ces études, la composition d'un corpus annoté est une étape indispensable, nous en avons donc profité pour élaborer un guide d'annotation dédié aux désignations nominales d'événements. Nous avons étudié l'importance et la qualité des lexiques existants pour une application dans notre tâche d'extraction automatique. Nous avons aussi, par des règles d'extraction, porté intérêt au cotexte d'apparition des noms pour en déterminer l'événementialité. À la suite de ces études, nous avons extrait un lexique pondéré en événementialité (dont la particularité est d'être dédié à l'extraction des événements nominaux), qui rend compte du fait que certains noms sont plus susceptibles que d'autres de représenter des événements. Utilisée comme indice pour l'extraction des noms d'événements, cette pondération permet d'extraire des noms qui ne sont pas présents dans les lexiques standards existants. Enfin, au moyen de l'apprentissage automatique, nous avons travaillé sur des traits d'apprentissage contextuels en partie fondés sur la syntaxe pour extraire de noms d'événements.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00758062 |
Date | 02 October 2012 |
Creators | Arnulphy, Béatrice |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds