Les réseaux sont présents dans plusieurs contextes et applications : biologie, transports, réseaux sociaux en ligne, etc. De nombreuses applications récentes traitent d'immenses volumes de données personnelles. Les liens entre les personnes dans ces données peuvent traduire des liens d'amitiés, des échanges de messages, ou des intérêts communs. Les entités impliquées dans les réseaux, et spécialement les personnes, ont tendance à former des communautés. Dans ce contexte, une communauté peut être définie comme un ensemble d'entités qui interagissent beaucoup plus entre elles qu'avec le reste du réseau. La détection de communautés dans les grands réseaux a largement été étudiée pendant ces dernières années, suite aux travaux précurseurs de Newman qui a introduit le critère de modularité. Toutefois, la majorité des algorithmes de détection de communautés supposent que le réseau est complètement connu et qu'il n'évolue pas avec le temps. Dans cette thèse, nous commençons par proposer de nouvelles méthodes pour la détection de communautés locales (en considérant uniquement le voisinage d'un nœud donné et sans accéder à la totalité du réseau). Nos algorithmes sont plus efficaces que ceux de l'état de l'art. Nous montrons ensuite comment utiliser les communautés détectées pour améliorer la prévision de comportements utilisateurs. Dans un deuxième temps, nous proposons des approches pour prévoir l'évolution des communautés détectées. Ces méthodes sont basées sur des techniques d'apprentissage automatique. Enfin, nous proposons un framework général pour stocker et analyser les réseaux distribués dans un environnement "Big Data" . Les méthodes proposées sont validées en utilisant (entre autre) des données réelles issues d'un partenaire industriel fournissant un des réseaux en ligne les plus utilisés en France (40 millions d'utilisateurs). / Complex networks arises in many contexts and applications : biology, transports, online social networks (ONS). Many recent applications deal with large amount of personal data. The links between peoples may reflect freindship, messaging, or some common interests. Entities in complex network, and espacially persons, tend to form communities. Here, a community can be defined as a set of entities interacting more between each other than with the rest of the network. The topic of community detection in large networks as been extensively studied during the last decades, following the seminal work by newman, who popularized the modularity criteria. However, most community detection algorithms assume that the network is entirely known and that is does not evolve with time. This is usually not true in real world applications. In this thesis, we start by proposing novel methods for local community identification (considering only the vicinity of a given node, without accessing the whole graph). Our algorithms experimentally outperform the state-of-art methods. We show how to use the local communities to enhance the prediction of a user's behaviour. Secondly, we propose some approaches to predict the evolution of the detected communities based on machine learning methods. Finally we propose a framework for storing and processing distributed social networks in a Big Data environment. The proposed methods are validated using (among others) real world data, provided by a industrial partner operating a major social network platform in France (40 millions of users).
Identifer | oai:union.ndltd.org:theses.fr/2014PA132057 |
Date | 27 November 2014 |
Creators | Ngonmang Kaledje, Christel Blaise |
Contributors | Paris 13, Viennet, Emmanuel |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0025 seconds