Dans le cadre de l'optimisation de la fiabilité, Thales Optronique intègre désormais dans ses équipements, des systèmes d'observation de leur état de fonctionnement. Cette fonction est réalisée par des HUMS (Health & Usage Monitoring System). L'objectif de cette thèse est de mettre en place dans le HUMS, un programme capable d'évaluer l'état du système, de détecter les dérives de fonctionnement, d'optimiser les opérations de maintenance et d'évaluer les risques d'échec d'une mission, en combinant les procédés de traitement des données opérationnelles (collectées sur chaque appareil grâce au HUMS) et prévisionnelles (issues des analyses de fiabilité et des coûts de maintenance, de réparation et d'immobilisation). Trois algorithmes ont été développés. Le premier, basé sur un modèle de chaînes de Markov cachées, permet à partir de données opérationnelles, d'estimer à chaque instant l'état du système, et ainsi, de détecter un mode de fonctionnement dégradé de l'équipement (diagnostic). Le deuxième algorithme permet de proposer une stratégie de maintenance optimale et dynamique. Il consiste à rechercher le meilleur instant pour réaliser une maintenance, en fonction de l'état estimé de l'équipement. Cet algorithme s'appuie sur une modélisation du système, par un processus Markovien déterministe par morceaux (noté PDMP) et sur l'utilisation du principe d'arrêt optimal. La date de maintenance est déterminée à partir des données opérationnelles, prévisionnelles et de l'état estimé du système (pronostic). Quant au troisième algorithme, il consiste à déterminer un risque d'échec de mission et permet de comparer les risques encourus suivant la politique de maintenance choisie.Ce travail de recherche, développé à partir d'outils sophistiqués de probabilités théoriques et numériques, a permis de définir un protocole de maintenance conditionnelle à l'état estimé du système, afin d'améliorer la stratégie de maintenance, la disponibilité des équipements au meilleur coût, la satisfaction des clients et de réduire les coûts d'exploitation.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00986112 |
Date | 07 November 2013 |
Creators | Baysse, Camille |
Publisher | Université Sciences et Technologies - Bordeaux I |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds