Les systèmes d'aide à la conduite (ADAS) ont pour objectif d'assister le conducteur et en particulier d'améliorer la sécurité routière. Pour cela, différents capteurs sont généralement embarqués dans les véhicules afin, par exemple, d'avertir le conducteur en cas de danger présent sur la route. L'utilisation de capteurs de type caméra est une solution économiquement avantageuse et de nombreux ADAS à base de caméra voient le jour. Malheureusement, les performances de tels systèmes se dégradent en présence de conditions météorologiques défavorables, notamment en présence de brouillard ou de pluie, ce qui obligerait à les désactiver temporairement par crainte de résultats erronés. Hors, c'est précisément dans ces conditions difficiles que le conducteur aurait potentiellement le plus besoin d'être assisté. Une fois les conditions météorologiques détectées et caractérisées par vision embarquée, nous proposons dans cette thèse de restaurer l'image dégradée à la sortie du capteur afin de fournir aux ADAS un signal de meilleure qualité et donc d'étendre la gamme de fonctionnement de ces systèmes. Dans l'état de l'art, il existe plusieurs approches traitant la restauration d'images, parmi lesquelles certaines sont dédiées à nos problématiques de brouillard ou de pluie, et d'autres sont plus générales : débruitage, rehaussement du contraste ou de la couleur, "inpainting"... Nous proposons dans cette thèse de combiner les deux familles d'approches. Dans le cas du brouillard notre contribution est de tirer profit de deux types d'approches (physique et signal) afin de proposer une nouvelle méthode automatique et adaptée au cas d'images routières. Nous avons évalué notre méthode à l'aide de critères ad hoc (courbes ROC, MSE, contraste visibles à 5 %, évaluation sur ADAS) appliqués sur des bases de données d'images de synthèse et réelles. Dans le cas de la pluie, une fois les gouttes présentes sur le pare-brise détectées, nous reconstituons les parties masquées de l'image à l'aide d'une méthode d'"inpainting" fondée sur les équations aux dérivées partielles. Les paramètres de la méthode ont été optimisés sur des images routières. Enfin, nous montrons qu'il est possible grâce à cette approche de construire trois types d'applications : prétraitement, traitement et assistance. Dans chaque famille, nous avons proposé et évalué une application spécifique : détection des panneaux dans le brouillard ; détection de l'espace navigable dans le brouillard ; affichage de l'image restaurée au conducteur. / Advanced Driver Assistance Systems (ADAS) are designed to assist the driver and in particular to improve road safety. For this purpose, various sensors are typically embedded in vehicles in order, for example, to alert the driver in case of imminent danger on the road. The use of camera type of sensor is a cost-effective solution and many ADAS based on camera are being created. Unfortunately, the performance of such systems decrease drastically in the presence of adverse weather conditions, especially in the presence of fog or rain, which could oblige to turn off the systems temporarily in order to avoid erroneous results. While, it is precisely in these difficult circumstances that the driver would potentially need the most to be assisted. Once the weather conditions detected and characterized by embedded vision, we propose in this thesis to restore the degraded image to provide a better signal to the ADAS and thus extend the operation range of these systems. In the state of the art, there are several approaches dealing with images restoration, some of which are dedicated to our fog and rain problem and others are more general : denoising, contrast or color enhancement, inpainting... We propose in this work to combine the two families of approaches. In the case of fog our contribution is to take advantage of both approaches (physical and signal) to propose a new automatic method adapted to the case of road images. We evaluated our method using ad hoc criteria (ROC curves, visible contrast to 5%, assessment on ADAS) applied to databases of synthetic and real images. In case of rain, once the drops present on the windshield are detected, we reconstruct the hidden parts of the image using a method of inpainting based on partial differential equations. The method parameters have been optimized on road images. Finally, we show that it is possible with this approach to build three types of applications : preprocessing, processing and assistance. In every family, we have proposed and evaluated a specific application : traffic signs detection during foggy weather; detection of free space in fog conditions and display of the restored image to the driver.
Identifer | oai:union.ndltd.org:theses.fr/2012EVRY0032 |
Date | 30 November 2012 |
Creators | Halmaoui, Houssam |
Contributors | Evry-Val d'Essonne, Aubert, Didier |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.0029 seconds