Cette recherche se caractérise, premièrement, par une discussion théorique sur le concept d'agent autonome, basée sur des éléments issus des paradigmes de l'Intelligence Artificielle Située et de l'Intelligence Artificielle Affective. Ensuite, cette thèse présente le problème de l'apprentissage de modèles du monde, en passant en revue la littérature concernant les travaux qui s'y rapportent. A partir de ces discussions, l'architecture CAES et le mécanisme CALM sont présentes. CAES (Coupled Agent-Environment System) constitue une architecture pour décrire des systèmes bases sur la dichotomie agent-environnement. Il définit l'agent et l'environnement comme deux systèmes partiellement ouverts, en couplage dynamique. Dans CAES, l'agent est compose de deux sous-systèmes, l'esprit et le corps, suivant les principes de la situativite et de la motivation intrinsèque. CALM (Constructivist Anticipatory Learning Mechanism) est un mécanisme d'apprentissage fonde sur l'approche constructiviste de l'Intelligence Artificielle. Il permet a un agent situe de construire un modèle du monde dans des environnements partiellement observables et partiellement déterministes, sous la forme d'un processus de décision markovien partiellement observable et factorise (FPOMDP). Le modèle du monde construit est ensuite utilise pour que l'agent puisse définir une politique d'action visant à améliorer sa propre performance / This research is characterized, first, by a theoretical discussion on the concept of autonomous agent, based on elements taken from the Situated AI and the Affective AI paradigms. Secondly, this thesis presents the problem of learning world models, providing a bibliographic review regarding some related works. From these discussions, the CAES architecture and the CALM mechanism are presented. The CAES (Coupled Agent-Environment System) is an architecture for describing systems based on the agent-environment dichotomy. It defines the agent and the environment as two partially open systems, in dynamic coupling. In CAES, the agent is composed of two sub-systems, mind and body, following the principles of situativity and intrinsic motivation. CALM (Constructivist Learning Anticipatory Mechanism) is based on the constructivist approach to Artificial Intelligence. It allows a situated agent to build a model of the world in environments partially deterministic and partially observable in the form of Partially Observable and Factored Markov Decision Process (FPOMDP). The model of the world is constructed and used for the agent to define a policy for action in order to improve its own performance
Identifer | oai:union.ndltd.org:theses.fr/2010INPT0041 |
Date | 11 June 2010 |
Creators | Studzinski Perotto, Filipo |
Contributors | Toulouse, INPT, Buisson, Jean-Christophe, Campos Álvares, Luís Otávio |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds