Flooding has always been and is still today a disastrous event with agricultural, infrastructural, economical and not least humanitarian ramifications. Understanding the behaviour of floods is crucial to be able to prevent or mitigate future catastrophes, a task which can be accomplished by modelling the water flow. In this thesis the finite element method is employed to solve the shallow water equations, which govern water flow in shallow environments such as rivers, lakes and dams, a methodology that has been widely used for flooding simulations. Alternative approaches to model floods are however also briefly discussed. Since the finite element method suffers from numerical instabilities when solving nonlinear conservation laws, the shallow water equations are stabilised by introducing a high-order nonlinear artificial viscosity, constructed using a multi-mesh strategy. The accuracy, robustness and well-balancedness of the solution are examined through a variety of benchmark tests. Finally, the equations are extended to include a friction term, after which the effectiveness of the method in a real-life scenario is verified by a prolonged simulation of the Malpasset dam break.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-531114 |
Date | January 2024 |
Creators | Näsström, David |
Publisher | Uppsala universitet, Avdelningen för beräkningsvetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UPTEC F, 1401-5757 ; 24027 |
Page generated in 0.0024 seconds