Return to search

Refined predictions for cosmic rays and indirect dark matter searches / Raffinement des prédictions théoriques pour la physique du rayonnement cosmique

Il y a tout juste cent ans que les premières mesures du taux d'ionisation de l'air ont dévoilé que la terre est sans cesse bombardée par une pluie de particules énergétiques provenant du Cosmos. D'un point de vue astrophysique, l'origine de ces particules hautement relativistes, appelés rayons cosmiques (CRs), ainsi que leur mécanisme d'accélération restent très peu connus. Le paradigme actuel suppose une injection sporadique des CRs accélérés par la propagation d'ondes de choc au cours de la mort de certaines étoiles (SNRs).Les mesures récentes des flux de CRs (par les expériences PAMELA et AMS-02 par exemple) inaugurent une nouvelle ère de précision dans la mesure où les incertitudes statistiques sont désormais considérablement réduites. Dans ce mémoire de thèse, nous proposons et approfondissons de nouvelles pistes théoriques de manière à maximiser l'information extraite de ces nouvelles données.Après une introduction générale sur la physique des CRs, nous nous concentrons sur les espèces dites primaires, qui sont produites directement par les SNRs. De la nature discrète des SNRs et de la méconnaissance quasi-complète de leurs positions et de leurs ages résulte une incertitude théorique qui nécessite d'être estimée pour la prédiction des flux observés sur Terre. Jusqu'alors ces prédictions se contentent de calculer la moyenne d'ensemble de ce flux. Dans cette partie nous exposons la théorie statistique que nous avons élaborée, permettant de calculer la probabilité d'une déviation du flux mesuré par rapport à la moyenne d'ensemble. Nous sommes amenés à utiliser une version généralisée du théorème de la limite centrale, avec lequel nous montrons que la loi de probabilité est intimement reliée à la distribution des sources et qu'elle converge vers une loi stable. Cette dernière diffère de la loi gaussienne par sa queue lourde en loi de puissance. Le cadre théorique développé ici peut non seulement être étendu à d'autres observables du rayonnement cosmique, mais aussi enrichi en incluant une description plus complète des corrélations entre les sources. De plus, la méthode que nous avons développée peut être appliquée à d'autres problèmes de physique/astrophysique impliquant des distributions à queue lourde.Deuxièmement nous nous penchons sur les CRs dits secondaires (comme le bore), qui sont produits par les collisions des espèces primaires avec le milieu interstellaire. Plus précisément nous nous concentrons sur le rapport du flux du bore sur celui du carbone qui est traditionnellement utilisé pour comprendre la propagation des CRs. Ainsi, tout porte à croire que les mesures extrêmement précises de ce rapport nous donneraient de fortes contraintes sur les scénarios de propagation. Malheureusement il n'en est rien et nous montrons que le calcul théorique dépend fortement de certaines hypothèses telles que le lieu de production des secondaires et le choix du jeux de sections efficaces d’interaction. Nous estimons à au moins 20 % les incertitudes sur les paramètres de propagation dérivés jusqu'à maintenant. Grâce aux nouvelles données de l'expérience AMS-02, nous présentons les points de départ de notre nouvelle analyse pour laquelle nous utilisons le code semi-analytique USINE.Finalement, dans une troisième partie, nous utilisons ces données de précision pour réactualiser les analyses portant sur la recherche indirecte de matière noire. En effet, les CRs d'antimatière seraient -au même titre que le bore- des particules secondaires. La prédiction de leur fond astrophysique repose sur une connaissance précise de la propagation des CRs et de leurs interactions dans la Galaxy. Nous les traitons ici sous les hypothèses habituelles et réévaluons les flux de positrons et d'antiprotons à la lumière des nouvelles données d'AMS-02. Nous discutons ensuite les conséquences pour la matière noire et les possibles explications astrophysiques d'éventuels excès observés. / A hundred years ago, pioneering observations of air ionization revealed that the Earth is showered with particles coming from the Galaxy and beyond. Because of their high energies, these particles coined cosmic-rays are still a crucial tool in the field of particle physics, complementary to man-made accelerators. From an astrophysical point of view, the origin of cosmic-rays and the mechanisms which accelerate them are still very poorly known. The present paradigm involves sporadic production associated with the expanding shock waves from dying stars (SNRs).Recent experiments (notably PAMELA and, more recently, AMS-02) are ushering us into a new era of measurements of cosmic-ray fluxes with greatly reduced statistical uncertainties. In this dissertation, we propose and investigate new theoretical refinements of our predictions to fully benefit from these advances.After a general introduction on cosmic-ray physics, we first focus on the so-called primary species which are directly produced by SNRs. In this context of precision measurements, the discreteness of the sources in space and time, together with a substantial ignorance of their precise epochs and locations (with the possible exception of the most recent and close ones) may lead to significant uncertainties in the predictions of the fluxes at the Earth. So far, the conventional approach just relied on average trends. Here, we elaborate a statistical theory in order to compute the probability for the actual flux to depart from its ensemble average. Using the generalized version of the central limit theorem, we demonstrate that the probability distribution function of the flux is intimately related to the source distribution and follows a stable law with a heavier tail than the Gaussian distribution. Our theoretical framework can not only be extended to other cosmic-ray observables, such as the lepton flux, but also can be enriched to include a more comprehensive description of the correlations between the sources. Moreover the method which we have developed may be applied to a variety of problems in physics/astrophysics involving heavy tail distributions.Secondly, we concentrate on secondary CRs, like the boron nuclei, which are thought to be produced only by the collisions of cosmic-rays on the interstellar medium. More precisely, the ratio of the boron to carbon fluxes is a traditional tool used to understand and gauge the propagation of cosmic-rays in the Galaxy. Hence a very precise measurement of this ratio should imply stringent constraints on the propagation scenario. However we show that its theoretical derivation strongly depends on where these secondary species are produced as well as on the chosen set of nuclear cross-sections. Hence we assess at the 20% level the theoretical uncertainties on the so far derived propagation parameters. As new data from AMS-02 were freshly released, we present the starting points of a comprehensive new analysis for which we use the semi-analytical code USINE.Finally these high precision measurements offer new opportunities for a number of astroparticle problems, such as indirect dark matter searches which is the main thrust of the third part of the thesis. Antimatter cosmic rays are thought to be secondary species and their relatively low fluxes make them a channel of choice to look for rare processes such as dark matter annihilation. Nonetheless, the predictions of the expected backgrounds rely on a precise modeling of cosmic-ray propagation and interactions in the Galaxy. We treat them under commonly used simplified assumptions and discuss two studies where we re-evaluate the anti-proton and the positron fluxes in the light of the new AMS-02 data. Then we discuss the implications for dark matter and astrophysical explanations.

Identiferoai:union.ndltd.org:theses.fr/2017GREAY049
Date10 July 2017
CreatorsGenolini, Yoann
ContributorsGrenoble Alpes, Salati, Pierre, Serpico, Pasquale D.
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0028 seconds