Monitoring data-intensive scientific infrastructures in real-time such as jobs, data transfers, and hardware failures is vital for efficient operation. Due to the high volume and velocity of events that are produced, traditional methods are no longer optimal. Several techniques, as well as enabling architectures, are available to support the Big Data issue. In this respect, this thesis complements existing survey work by contributing an extensive literature review of both traditional and emerging Big Data architecture. Scalability, low-latency, fault-tolerance, and intelligence are key challenges of the traditional architecture. However, Big Data technologies and approaches have become increasingly popular for use cases that demand the use of scalable, data intensive processing (parallel), and fault-tolerance (data replication) and support for low-latency computations. In the context of a scalable data store and analytics platform for monitoring data-intensive scientific infrastructure, Lambda Architecture was adapted and evaluated on the Worldwide LHC Computing Grid, which has been proven effective. This is especially true for computationally and data-intensive use cases. In this thesis, an efficient strategy for the collection and storage of large volumes of data for computation is presented. By moving the transformation logic out from the data pipeline and moving to analytics layers, it simplifies the architecture and overall process. Time utilised is reduced, untampered raw data are kept at storage level for fault-tolerance, and the required transformation can be done when needed. An optimised Lambda Architecture (OLA), which involved modelling an efficient way of joining batch layer and streaming layer with minimum code duplications in order to support scalability, low-latency, and fault-tolerance is presented. A few models were evaluated; pure streaming layer, pure batch layer and the combination of both batch and streaming layers. Experimental results demonstrate that OLA performed better than the traditional architecture as well the Lambda Architecture. The OLA was also enhanced by adding an intelligence layer for predicting data access pattern. The intelligence layer actively adapts and updates the model built by the batch layer, which eliminates the re-training time while providing a high level of accuracy using the Deep Learning technique. The fundamental contribution to knowledge is a scalable, low-latency, fault-tolerant, intelligent, and heterogeneous-based architecture for monitoring a data-intensive scientific infrastructure, that can benefit from Big Data, technologies and approaches.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:764857 |
Date | January 2017 |
Creators | Suthakar, Uthayanath |
Contributors | Smith, D. ; Khan, A. ; Magnoni, L. |
Publisher | Brunel University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://bura.brunel.ac.uk/handle/2438/15788 |
Page generated in 0.0018 seconds