Higher-level education is very important these days, which can create very high thresholds for admission on popular programs on certain universities. In order to know what grade will be needed to be admitted to a program, a student can look at the threshold from previous years. We explored whether it was possible to generate accurate predictions of what the future threshold would be. We did this by using well-established machine learning classification models and admission data from 14 years back covering all applicants to the Computer Science and Engineering Program at KTH Royal Institute of Technology. What we found through this work is that the models are good at correctly classifying data from the past, but not in a meaningful way able to predict future thresholds. The models could not make accurate future predictions solely based on grades of past applicants. / Eftergymnasiala studier är väldigt viktiga numera, vilket kan leda till mycket höga antagningskrav på populära program på vissa universitet och högskolor. För att veta vilket betyg som krävs för att komma in på en utbildning så kan studenten titta på gränsen från tidigare år och utifrån det gissa sig till vad gränsen kommer vara kommande år. Vi undersöker om det är möjligt att, med hjälp av väletablerade, klassificerande Maskininlärnings-modeller kunna förutse antagningsgränsen i framtiden. Vi tränar modellerna på data med antagningsstatistik som sträcker sig tillbaka 14 år med alla ansökningar till civilingenjörs-programmet Datateknik på Kungliga Tekniska Högskolan. Det vi finner genom detta arbete är att modellerna är bra på att korrekt klassificera data från tidigare år, men att de inte, på ett meningsfullt sätt, kan förutse betygsgränsen kommande år. Modellerna kan inte göra detta endast genom data på betyg från tidigare år.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-333670 |
Date | January 2023 |
Creators | Almawed, Anas, Victorin, Anton |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2023:280 |
Page generated in 0.0034 seconds