A variety of schemes have been proposed in the literature to speed up query processing and analytics by incrementally maintaining a bounded-size uniform sample from a dataset in the presence of a sequence of insertion, deletion, and update transactions. These algorithms vary according to whether the dataset is an ordinary set or a multiset and whether the transaction sequence consists only of insertions or can include deletions and updates. We report on subtle non-uniformity issues that we found in a number of these prior bounded-size sampling schemes, including some of our own. We provide workarounds that can avoid the non-uniformity problem; these workarounds are easy to implement and incur negligible additional cost. We also consider the impact of non-uniformity in practice and describe simple statistical tests that can help detect non-uniformity in new algorithms.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:83116 |
Date | 27 January 2023 |
Creators | Gemulla, Rainer, Haas, Peter J., Lehner, Wolfgang |
Publisher | Springer |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/acceptedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 0949-877X, 10.1007/s00778-013-0307-0 |
Page generated in 0.0022 seconds