Aufgrund der in vielen Bereichen stets wachsenden Menge an zu verarbeitenden Daten haben sich Big-Data-Anwendungen in den letzten Jahren zunehmend verbreitet. Twitter gab bereits im Jahr 2011 an, täglich 15 Millionen URLs in Echtzeit zu untersuchen, um die Verbreitung von Spamlinks zu unterbinden [1]. Facebook verarbeitet pro Minute über vier Millionen „Gefällt mir“-Klicks und verwaltet über 300 Petabyte Daten [2]. Über das Businessportal LinkedIn wurden 2011 rund eine Milliarde Nachrichten pro Tag zugestellt, 2015 waren es laut Angaben des Unternehmens bereits 1,1 Billionen täglich versendete Nachrichten [3]. Diesem starken Anstieg liegt ein exponentielles Wachstum zugrunde, das für Big Data typisch ist.
Gartner definiert den Begriff „Big Data“ auf Basis seiner spezifischen Eigenschaften, die in englischer Sprache auch als die „drei V´s“ bezeichnet werden: „Volume“, „Variety“ und „Velocity“ [4]. Neben der enormen Menge an zu verarbeitenden Daten („Volume“) und ihrer Vielfalt und Unstrukturiertheit („Variety“), ist demnach auch die Geschwindigkeit („Velocity“), in der die Daten generiert werden, ein wesentliches Merkmal von Big Data [5, 6]. Soll trotz der ständigen und immer schneller werdenden Generierung neuer Daten ein Verarbeitungsrückstau vermieden werden, so folgt daraus auch die Notwendigkeit, die kontinuierlich wachsenden Datenmengen immer schneller zu verarbeiten.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:76381 |
Date | 28 October 2021 |
Creators | Weißbach, Manuel |
Contributors | Schill, Alexander, Becker, Christian, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | German |
Detected Language | German |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0309 seconds