A mesh-less method for solving incompressible, multi-phase flow problems has been developed and is discussed along with the presentation of benchmark results showing good agreement with theoretical and experimental results. Results of a systematic, parametric study of the single phase flow around a 2D circular cylinder at Reynolds numbers up to 1000 are presented and discussed. Simulation results show good agreement with experimental results. Extension of the method to deal with multiphase flow including liquid-to-vapor phase transition along with applications to cavitating flow are discussed. Insight gleaned from numerical experiments of the cavity closure problem are discussed along with recommendations for additional research. Several conclusions regarding the use of the method are made.
Identifer | oai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-1885 |
Date | 19 December 2008 |
Creators | Bourg, David M. |
Publisher | ScholarWorks@UNO |
Source Sets | University of New Orleans |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of New Orleans Theses and Dissertations |
Page generated in 0.0016 seconds